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Abstract. In this work, we study the existence of W
1,p(·)
0 -solutions to the fol-

lowing boundary value problem involving the p(·)-Laplacian operator: −∆p(x)u+ |∇u|q(x) = g(x)uη(x) + f(x), in Ω,
u ≥ 0, in Ω
u = 0, on ∂Ω.

under appropriate ranges on the variable exponents. We give assumptions on f
and g in terms of the growth exponents q and η under which the above problem

has a solution in W
1,p(·)
0 .

1. Introduction

The contribution of the article is to give conditions on the data f and g to guaran-

tee the existence of weak solutions in the variable exponent Sobolev spaceW
1,p(·)
0 (Ω)

to boundary value problems with the p(·)-Laplacian operator:

(1.1)

 −∆p(x)u+ |∇u|q(x) = g(x)uη(x) + f(x), in Ω,
u ≥ 0, in Ω
u = 0, on ∂Ω.

Our results extend the analysis of [2] and [24] to the non-standard framework with

the difference that we look for solutions in W
1,p(·)
0 (Ω) and not only in W

1,q(·)
0 (Ω).

However, to obtain the desired results we should impose somewhat more regularity
on the data.

We always assume that Ω ⊂ RN is open, bounded and connected with smooth
boundary, and that the exponents satisfy:
(1.2)
p, q, η ∈ C(Ω), p− := min

Ω
p(·) > 1, p+ := max

Ω
p(·) < N, q− > η+, 1 ≤ η(·) < q∗(·)−1.

The main result of the paper Theorem 3.2 states the existence of solutions to (1.1)
under the following additional assumptions on the exponents:

(1.3) max {p(·)− 1, 1} ≤ q(·) < p(·),
and appropriate integrability conditions on f and g. Moreover, in Theorem 3.4 we

also state existence of W
1,p(·)
0 -solutions for the degenerate case p(·) ≥ 2 with natural
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growth in the gradient:

(1.4)

 −∆p(x)u+ |∇u|p(x) = g(x)uη(x) + f(x), in Ω,
u ≥ 0, in Ω
u = 0, on ∂Ω,

under slighter conditions on the non-negative data f and g. Indeed, in this case we
just require f ∈ L1(Ω) and g ∈ L(q∗(·)/η(·))′(Ω), recovering results in the cases of the

Laplacian [2] and of the p-Laplacian [24]. The existence of solutions in W
1,p(·)
0 to

(1.1) and (1.4) does not follow from the general results from [1] and [22], which are
based on Leray-Lions’ Theorem or Brezis’ Theorem for pseudo-monotone operators
in separable reflexive spaces. Here, we are not able to use that technique due to the
higher range of the exponents (coerciveness is not obtained in general). Thus, our
approach is different, uses truncations and hence is closer to the arguments in [2]
and [7] (see also [8], [9], [10],[25] and the reference therein). However, limitations
derived from the theory of equations with non-standard growth force to introduce
variations in the proof of the main results.

Recent systematic study of partial differential equations with variable exponents
was motivated by the description of models in electrorheological and thermorheo-
logical fluids, image processing, or robotics. As an illustrative example, we discuss
the model [12] for image restoration. Let us consider an input I that corresponds
to shades of gray in a domain Ω ⊂ R2. We assume that I is made up of the true
image u corrupted by the noise and that the noise is additive. Thus, the effect of the
noise can be eliminated by smoothing the input, which corresponds to minimizing
the energy:

E1(u) =

�
Ω
|∇u(x)|2 + |u(x)− I(x)|2dx.

Unfortunately, smoothing destroys the small details of the image, so this procedure
is not useful. A better approach is the total variation smoothing. Since an edge
in the image gives rise to a very large gradient, the level sets around the edge are
very distinct, so this method does a good job of preserving edges. Total variation
smoothing corresponds to minimizing the energy:

E2(u) =

�
Ω
|∇u(x)|+ |u(x)− I(x)|2dx.

However, total variation smoothing not only preserves edges, but it also creates edges
where there were none in the original image. The suggestion of [12] was to ensure
total variation smoothing (p = 1) along edges and Gaussian smoothing (p = 2) in
homogeneous regions. Furthermore, it employs anisotropic diffusion (1 < p < 2) in
regions which may be piecewise smooth or in which the difference between noise and
edges is difficult to distinguish. Specifically, they proposed to minimize:

E(u) =

�
Ω
ϕ(x,∇u) + (u− I)2dx

where:

ϕ(x, ξ) :=

{ 1
p(x) |ξ|

p(x), if |ξ| ≤ β,

|ξ| − C(β, p(x)), if |ξ| > β
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where β > 0 and 1 ≤ p(x) ≤ 2. According to [12], the main benefit of this model is
the manner in which it accommodates the local image information. Where the gra-
dient is sufficiently large (i.e. likely edges), only total variation based diffusion will
be used. Where the gradient is close to zero (i.e. homogeneous regions), the model
is isotropic. At all other locations, the filtering is somewhere between Gaussian and
total variation based. When minimizing over u of bounded variations, satisfying
given Dirichlet conditions, the associated flow is:

ut − div (ϕr(x,∇u)) + 2(u− I) = 0, in Ω× [0, T ],

with u(x, 0) = I(x), u satisfying the prescribed boundary conditions. Hence, the
above model is directly related to the study of PDE’s with the p(·)-Laplacian oper-
ator:

∆p(x)u := div
(
|∇u|p(x)−2∇u

)
.

Classical references for existence and regularity of solution for p(·)-Laplacian
Dirichlet problems are [21], [20] and [19], among others. Existence and unique-
ness for p(x)-laplace equations with zero order terms have been given in [17]. Some
new criteria to guarantee the existence of multiple solutions were recently given in
[26].

Elliptic equations with first order terms have been largely studied in the literature.
It has been shown in [6] that the equation:

−∆u = λ
u

|x|2
+ f(x), in a bounded Ω, 0 ∈ Ω,

has in general no solution for a positive f ∈ L1(Ω). Indeed, in [4, Theorem 2.3], it
is proved that a sufficient and necessary condition for existence (for f ∈ L1(Ω)) is
that:

|x|−2f ∈ L1(Ω).

In contrast, by adding a quadratic gradient term on the left-hand side, solutions do
exist for any λ > 0 and non-negative f ∈ L1(Ω) (see [3]). This phenomenon has
been studied in depth in the reference [2] for problems of the form:

(1.5)

 −∆u+ |∇u|q = λg(x)u+ f(x), in Ω,
u > 0, on Ω.
u = 0, on ∂Ω.

for the range 1 ≤ q ≤ 2. Indeed, it is proved that, for q ∈ (1, 2], and if g ∈ L1(Ω)
satisfies:

g ≥ 0, g ̸= 0, and C(g, q) := inf
ϕ∈W 1,q

0 (Ω)

(�
Ω |∇ϕ|qdx

)1/q
�
Ω g|ϕ|dx

> 0,

then Problem (1.5) admits a distributional solution in W 1,q
0 (Ω) for any non-negative

f ∈ L1(Ω), and any λ ≥ 0. Under higher integrability assumptions on f and g, it is

possible to get solutions in W 1,2
0 (Ω) ∩ L∞(Ω) (see [2, Theorem 2.4]). The case of a

convex function of the gradient φ(∇u) (q ≥ 2 in (1.5)), f Lipschitz and λ = 0 has
been treated in [23]. Regarding equations with the p-Laplacian operator, we refer
the reader to [24].
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The paper is organized as follows. In section 2 we collect some preliminaries
results in the framework of variable exponent spaces. In section 3 we introduce the
main results of the paper. In section 4 we prove Theorem 3.2 and, finally, in section
5 we give the proof of Theorem 3.4.

2. Preliminaries

In this section we introduce basic definitions and preliminary results related to
spaces of variable exponent and the related theory of differential equations.

Let:
C+(Ω) :=

{
p ∈ C(Ω) : p(x) > 1 for any x ∈ Ω

}
p− := min

Ω
p(·), p+ := max

Ω
p(·).

We always assume that the variable exponents p are taking in C+(Ω) and satisfy
that there is C > 0 so that:

(2.1) |p(x)− p(y)| ≤ C
1

| log |x− y||
, for all x, y ∈ Ω x ̸= y.

We also define the variable exponent Lebesgue space by:

Lp(·)(Ω) :=

{
u : Ω → R : u is measurable and

�
Ω
|u(x)|p(x) dx <∞

}
.

A norm in Lp(·)(Ω) is defined as follows:

∥u∥Lp(·) := inf

{
λ > 0 :

�
Ω

∣∣∣u(x)
λ

∣∣∣p(x) dx ≤ 1

}
.

We denote by Lp′(·)(Ω) the conjugate space of Lp(·)(Ω), where:

1

p(·)
+

1

p′(·)
= 1.

For the next results see [15].

Theorem 2.1 (Hölder’s inequality). The space (Lp(·)(Ω), ∥ · ∥Lp(·)(Ω)) is a separable,

uniform convex Banach space. For u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω) there holds:∣∣∣�
Ω
uv dx

∣∣∣ ≤ ( 1

p−
+

1

(p′)−

)
∥u∥Lp(·)(Ω)∥v∥Lp′(·)(Ω).

Proposition 2.2. Let:

ρ(u) =

�
Ω
|u|p(x) dx, u ∈ Lp(·)(Ω)

be the convex modular. Then the following assertions hold:

(i) ∥u∥Lp(·)(Ω) < 1 (resp. = 1, > 1) if and only if ρ(u) < 1 (resp. = 1, > 1);

(ii) ∥u∥Lp(·)(Ω) > 1 implies ∥u∥p
−

Lp(·)(Ω)
≤ ρ(u) ≤ ∥u∥p

+

Lp(·)(Ω)
, and ∥u∥Lp(·)(Ω) < 1

implies ∥u∥p
+

Lp(·)(Ω)
≤ ρ(u) ≤ ∥u∥p

−

Lp(·)(Ω)
;

(iii) ∥u∥Lp(·)(Ω) → 0 if and only if ρ(u) → 0, and ∥u∥Lp(·)(Ω) → ∞ if and only if

ρ(u) → ∞.
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We now give a useful result in order to work with different variable Lebesgue
exponents (see [16]).

Lemma 2.3. Suppose that p, q ∈ C+(Ω) and that 1 ≤ p(·)q(·) ≤ +∞ for all x ∈ Ω.

Let f ∈ Lp(·)q(·)(Ω), f not identically 0. Then:

(i) ∥f∥p
+

Lp(·)q(·)(Ω)
≤ ∥fp(·)∥Lq(·)(Ω) ≤ ∥f∥p

−

Lp(·)q(·)(Ω)
if ∥f∥Lp(·)q(·)(Ω) ≤ 1;

(ii) ∥f∥p
−

Lp(·)q(·)(Ω)
≤ ∥fp(·)∥Lq(·)(Ω) ≤ ∥f∥p

+

Lp(·)q(·)(Ω)
if ∥f∥Lp(·)q(·)(Ω) ≥ 1.

The Sobolev space W 1,p(·)(Ω) is defined as follows (∇u denotes the distributional
gradient):

W 1,p(·)(Ω) :=
{
u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)

}
equipped with the norm:

∥u∥W 1,p(·)(Ω) := ∥u∥Lp(·)(Ω) + ∥∇u∥Lp(·)(Ω).

We denote by W
1,p(·)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(·)(Ω). The following Sobolev
Embedding Theorem for variable exponent spaces holds.

Theorem 2.4. If p+ < N , then

0 < S(p(·), q(·),Ω) = inf
v∈W 1,p(·)

0 (Ω)

∥∇v∥Lp(·)(Ω)

∥v∥Lq(·)(Ω)

,

for all

1 ≤ q(·) ≤ p∗(·) = Np(·)
N − p(·)

.

Remark 2.5. We need the q(·) exponent to be uniformly subcritical, i.e. infΩ(p
∗(·)−

q(·)) > 0 to assure that W
1,p(·)
0 (Ω) ↪→ Lq(·)(Ω) is still compact.

We recall that the p(·)-Laplace operator is given by:

−∆p(x)u := −div
(
|∇u|p(x)−2∇u

)
.

Let X = W
1,p(·)
0 (Ω). The operator −∆p(x) is the weak derivative of the functional

J : X → R:
J(u) :=

�
Ω

1

p(x)
|∇u|p(x) dx

in the sense that if L = J ′ : X → X∗ then:

(L(u), v) =

�
Ω
|∇u|p(x)−2∇u∇v dx, u, v ∈ X.

We want to mention that the sharp regularity for the gradient in the context of vari-
able exponent spaces was obtained in [5, 14]. We also recall the following properties.

Theorem 2.6. Let X =W
1,p(·)
0 (Ω). Then:

(i) L : X → X∗ is continuous, bounded and strictly monotone;
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(ii) L is a mapping of type (S+), that is, if un ⇀ u in X and:

lim sup
n→∞

(L(un)− L(u), un − u) ≤ 0

then un → u in X;
(iii) L is a homeomorphism.

We also quote the following useful lemma [1, Lemma 3.3].

Lemma 2.7. Let 1 < r(·) < ∞, g ∈ Lr(·)(Ω) and gn ∈ Lr(·)(Ω) with ∥gn∥Lr(·)(Ω) ≤
C. If gn(x) → g(x) a.e. in Ω, then gn ⇀ g in Lr(·)(Ω).

The next generalization of Lemma 1.17 in [13] to the variable exponent setting
holds true.

Lemma 2.8. Suppose p(·) ∈ (1,+∞). Let {uϵ}ϵ be a weakly convergent sequence in

Lp(·)(Ω) with limit u and let {ϕϵ}ϵ be a bounded sequence in L∞(Ω) with limit ϕ a.e

in Ω. Then uϵϕϵ ⇀ uϕ weakly in Lp(·)(Ω).

3. Main results

We now give the main results of the paper which state the existence of solutions
to Problems (1.1) and (1.4). We start giving the notion of solution that we shall
employ in the sequel.

Definition 3.1. We say that u ∈W
1,p(·)
0 (Ω) is a weak solution to Problem (1.1) or

(1.4) if guη(·) ∈ L1
loc(Ω) and:�

Ω
|∇u|p(x)−2∇u · ∇ϕdx+

�
Ω
|∇u|q(x)ϕdx =

�
Ω
g(x)uη(x)ϕdx+

�
Ω
f(x)ϕdx

for all ϕ ∈W
1,p(·)
0 (Ω) ∩ L∞(Ω).

The main contribution of the article is the following existence result for the Dirich-
let problem (1.1).

Theorem 3.2. Assume (1.2) and (1.3). Let f ∈ Lq0(Ω) be non-negative and g ∈
Lq1(·)(Ω), g ≩ 0, where:

(3.1) q0 :=

(
Nq−

N − q−

)′
, q1(·) :=

(
q∗(·)

η(·) + 1

)′
.

Then there is a weak solution u ∈W
1,p(·)
0 (Ω) to (1.1).

Remark 3.3. Observe that if g ∈ Lq1(·)(Ω) then g ∈ L

(
q∗(·)
η(·)

)′

(Ω). So, for any

ϕ ∈ W
1,q(·)
0 (Ω), we derive ϕ ∈ Lq∗(·)(Ω) and hence ϕη(·) ∈ Lq∗(·)/η(·)(Ω). By the

assumption on g we obtain:

∥g
1

η(·)ϕ∥Lη(·)(Ω) ≤ C0(η, q)∥g
1

η(·) ∥L(q∗(·)/η(·))′η(Ω)∥ϕ∥Lq∗(·)(Ω)

= C0(g, η, q)∥ϕ∥Lq∗(·)(Ω)

≤ C0(g, η, q)∥∇ϕ∥Lq(·)(Ω),
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where we have used Lemma 2.3. As a result:

(3.2) C(g, η, q) := inf
ϕ∈W 1,q(·)

0 (Ω)

∥∇ϕ∥Lq(·)(Ω)

∥g
1

η(·)ϕ∥Lη(·)(Ω)

> 0.

For the case p(x) = q(x) for all x ∈ Ω we have the next result. Regarding the
assumption p(·) ≥ 2, we refer the reader to Remark 5.1.

Theorem 3.4. Assume (1.2) and p(·) ≥ 2. Let f ∈ L1(Ω) be non-negative and

g ∈ L

(
q∗(·)
η(·)

)′

(Ω), g ≩ 0. Then there is a weak solution u ∈W
1,p(·)
0 (Ω) to (1.4).

The constant case is a straightforward consequence of the above results (compare
to [24]).

Corollary 3.5. Assume 1 < p < N and:

(3.3) max

{
1, p− 1,

Np

N + p

}
< q < p.

For non-negative f ∈ L(q∗)′(Ω) and g ∈ L(q∗/p)′(Ω), g ≩ 0, there is a non-negative

solution u ∈W 1,p
0 (Ω) of:{

−∆pu+ |∇u|q = g(x)up−1 + f(x), in Ω,
u = 0, on ∂Ω.

Notice that condition q ≥ Np/(N + p) in (3.3) is needed in order to have (1.2)
for η = p− 1.

Corollary 3.6. Assume q = p and 2 ≤ p < N . Let f ∈ L1(Ω) and g ∈ Lq∗/(p−1)(Ω)

be non-negative, g ≩ 0. Then there is a non-negative solution u ∈W 1,p
0 (Ω) of:{

−∆pu+ |∇u|p = g(x)up−1 + f(x), in Ω,
u = 0, on ∂Ω.

Remark 3.7. Observe that since q < N , we have:

(q∗)′ <
N

q

hence our results for the constant case p = 2 require less regularity of f than in [2,

Theorem 2.4] to get existence in W 1,2
0 (Ω). However, we impose more regularity on

g than the used in [2]. We believe that the optimal regularity on g in all the above
results should be:

g ∈ L(q∗(·)/η(·))′(Ω).

This remains open and will be treated in a future work.

As a concluding remark, we point out that the main results of the paper contribute
to the fact that the presence of first-order terms produces regularization effects and
permits the existence of solutions. In fact, suppose that for each f ∈ L1(Ω) there is

a weak (energy) solution u ∈W
1,p(·)
0 (Ω) to:

−∆p(x)u = up(x)−1 + f(x) in Ω.
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Hence:

L1(Ω) ⊂W−1,p′(·)(Ω)

which is a contradiction.

4. Proof of Theorem 3.2

4.1. Previous results. In this section we give preliminary results in order to prove
Theorem 3.2 in the next section.

Given a non-negative measurable function u, we will consider the usual k-truncation
functions Tk and Gk defined as:

Tk(u) :=

{
u, if |u| ≤ k,
k, if |u| ≥ k.

and:

Gk(u) := u− Tk(u).

Observe that Gk(u) = 0 when u ≤ k.
We start by proving the following technical result.

Lemma 4.1. Let 0 < q(·) < p(·). Then for any ε > 0, there is a constant Cε > 0
so that:

(4.1) sq(x) ≤ εsp(x) + Cε, for all s ≥ 0 and x ∈ Ω.

Proof. For ε < 1, by Young Inequality we observe that

εsq(x)
1

ε
≤ ε

p(x)
q(x)

p(x)
q(x)

sp(x) +
1
ε

r(x)

r(x)

where r(x) =
(
p(x)
q(x)

)′
, using that q(x)

p(x) ≤ 1 and ε
p(x)
q(x) < ε, we obtain that

sq(x) ≤ εsp(x) + Cε

where Cε =
1
ε

r+

r− . Finally, for ε ≥ 1, it is easy to see that

sq(x) ≤ εsp(x) + 1,

as we want to prove.

The following proposition gives the existence of solutions to Problem (1.1) for
truncated zero-order terms and bounded data.

Proposition 4.2. Let f, g ∈ L∞(Ω) be non-negative and let k be positive. Then

there exists a non-negative solution uk ∈W
1,p(·)
0 (Ω) to the following equation:

(4.2) −∆p(x)u+ |∇u|q(x) = g(x)(Tku)
η(x) + f(x) in Ω.

Proof. Let vk ∈W
1,p(·)
0 (Ω) be so that:

(4.3) −∆p(x)vk = g(x)kη
+
+ f(x).
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Observe that vk ∈ L∞(Ω) (for instance, by Corollary 3.2 in [22]). For each n consider
the problem:

(4.4)

{
−∆p(x)w +Gn(x,w,∇w) = f(x), in Ω,

w = 0, on ∂Ω.

where for (x, r, ξ) ∈ Ω× R× RN :

Gn(x, r, ξ) =

{
χ[0,∞)(r)Hn(x, ξ)− g(x)Tk(r)

η(x) if r > 0

0 if r ≤ 0

where:

Hn(x, ξ) =
|ξ|q(x)

1 + 1
n |ξ|q(x)

.

Observe that Gn is a Carathéodory function. By [1, Theorem 4.1], there is a solution

wn ∈ W
1,p(·)
0 (Ω) to (4.4). We shall prove that wn ≥ 0 for all n. We start by

considering truncations of (−wn)
+ for each M ≥ 0:

(−wn)
+
M =

{
(−wn)

+ if (−wn)
+(x) ≤M

M if (−wn)
+(x) > M

Also, we define the following auxiliary sets:

ω0 = {x ∈ Ω : −wn(x) ≥ 0}

ωM
0 = {x ∈ Ω : 0 ≤ −wn(x) ≤M}

It is clear that: {
(−wn)

+
M = 0, if x ∈ Ω− ω0

∇(−wn)
+
M = 0, if x ∈ Ω− ωM

0 .

As a result, using (−wn)
+
M as a test function in (4.4), we obtain:

0 ≤
�
Ω
f(x)(−wn)

+
M dx

=

�
Ω
|∇wn|p(x)−2∇wn · ∇(−wn)

+
M dx+

�
Ω
Gn(x,wn,∇wn)(−wn)

+
M dx

= −
�
ωM
0

|∇wn|p(x) dx+

�
ω0

Gn(x, 0, 0)(−wn)M dx

= −
�
ωM
0

|∇wn|p(x) dx.

(4.5)

Thus for all M ≥ 0:

∇(−wn)
+ = 0 a.e. in ωM

0 .

It follows that ∇(−wn)
+ = 0 a.e. in Ω and hence, since (−wn)

+ ∈ W
1,p(·)
0 (Ω),

(−wn)
+ = 0 a.e. Hence, wn ≥ 0. Observe that

−∆p(x)w ≤ f(x) + g(x)kη
+
= −∆p(x)vk,



10 PABLO OCHOA AND ANALIA SILVA

hence by comparison ([18, Lemma 2.2]) wn ≤ vk where vk solves (4.3), and since wn

is non-negative, we get ∥wn∥L∞(Ω) ≤ ∥vk∥L∞(Ω) for all n. Thus wn solves:

(4.6)

{
−∆p(x)w +Hn(x,∇w) = g(x)(Tkw)

η(x) + f(x), in Ω,
w = 0, on ∂Ω.

We study now the convergence of wn. Using wn as a test function in (4.6), we
derive:

�
Ω
|∇wn|p(x) dx+

�
Ω
Hn(x, |∇wn|)wn dx

=

�
Ω
g(x)(Tkwn)

η(x)wn dx+

�
Ω
f(x)wn dx.

Hence: �
Ω
|∇wn|p(x) dx ≤ C(f, g,Ω, k)

which implies, up to subsequence, that there is uk ∈ W
1,p(·)
0 (Ω) so that wn ⇀ uk

in W
1,p(·)
0 (Ω). By weak∗-convergence in L∞(Ω) we derive uk ≤ ∥vk∥L∞(Ω). We now

prove that wn → uk strongly in W
1,p(·)
0 (Ω).

Consider ϕ(s) = s exp
(
1
4s

2
)
, which satisfies:

(4.7) ϕ′(s)− |ϕ(s)| ≥ 1

2
.

We use ϕn = ϕ(wn − uk) as a test function in (4.6) and we obtain (we write ϕ′n =
ϕ′(wn − uk)):

�
Ω
|∇wn|p(x)−2∇wn · ∇(wn − uk)ϕ

′
n dx+

�
Ω
Hn(x,∇wn)ϕn dx

=

�
Ω

(
g(x)[Tkwn]

η(x)ϕn dx+ f(x)ϕn

)
dx.

(4.8)

Since ϕn is uniformly bounded and tends to 0 as n→ ∞, we conclude by Lebesgue
Dominated Theorem that the right hand side of (4.8) tends to 0. Next, by Lemma
4.1 it follows:

∣∣∣ �
Ω

|∇wn|q(x)

1 + 1
n |∇wn|q(x)

ϕn dx
∣∣∣ ≤ ε

�
Ω
|∇wn|p(x)|ϕn| dx+ Cε

�
Ω
|ϕn| dx

≤ ε2p
+−1

(�
Ω
|∇wn −∇uk|p(x)|ϕn| dx+

�
Ω
|∇uk|p(x)|ϕn| dx

)
+ Cε

�
Ω
|ϕn| dx.

(4.9)
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Again by Lebesgue’s Theorem, the last two terms converge to 0 as n → ∞. The
first term in (4.8) is treated as follows:�

Ω
|∇wn|p(x)−2∇wn · ∇(wn − uk)ϕ

′
n dx

=

�
Ω
(|∇wn|p(x)−2∇wn − |∇uk|p(x)−2∇uk) · ∇(wn − uk)ϕ

′
n dx

+

�
Ω
|∇uk|p(x)−2∇uk · ∇(wn − uk)ϕ

′
n dx.

(4.10)

Since ϕ′n is bounded, |∇uk|p(·)−2∇uk ∈ Lp′(·)(Ω) and ∇(wn−uk)⇀ 0 in Lp(·)(Ω) we
derive by Lemma 2.8 that:

lim
n→∞

�
Ω
|∇uk|p(x)−2∇uk · ∇(wn − uk)ϕ

′
n dx = 0.

We will use the well-known vector inequalities:

(|ξ|p(·)−2ξ − |η|p(·)−2η) · (ξ − η) ≥
(
1

2

)p(·)
|ξ − η|p(·) if p(·) ≥ 2.

(|ξ|p(·)−2ξ − |η|p(·)−2η) · (ξ − η) ≥ (p(·)− 1)
|ξ − η|2

(|ξ|+ |η|)2−p(·) if 1 < p(·) < 2.

We introduce the sets:
Ω1 = {x ∈ Ω : p(x) ≥ 2}

and:
Ω2 = {x ∈ Ω : p(x) < 2} .

Now:�
Ω
|∇(wn − uk)|p(x)ϕ′n dx =

�
Ω1

|∇(wn − uk)|p(x)ϕ′n dx+

�
Ω2

|∇(wn − uk)|p(x)ϕ′n dx.

We treat first the degenerate case:

�
Ω1

|∇(wn − uk)|p(x)ϕ′n dx

≤ 2p
+

�
Ω1

(|∇wn|p(x)−2∇wn − |∇uk|p(x)−2∇uk) · ∇(wn − uk)ϕ
′
n dx (since ϕ′n > 0)

≤ 2p
+

�
Ω
(|∇wn|p(x)−2∇wn − |∇uk|p(x)−2∇uk) · ∇(wn − uk)ϕ

′
n dx

≤ 2p
+

�
Ω
|∇wn|p(x)−2∇wn · ∇(wn − uk)ϕ

′
n dx+ o(1) (by (4.10))

≤ 22p
+−1ε

�
Ω
|∇wn −∇uk|p(x)|ϕn| dx+ o(1) (by (4.9) and (4.8)).

(4.11)

The uniform boundedness of wn in W
1,p(·)
0 (Ω) and of |ϕn| in L∞(Ω) imply by (4.11)

that:

(4.12) lim sup
n→∞

�
Ω1

|∇(wn − uk)|p(x)ϕ′n dx ≤ Cε.
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Next, writing:�
Ω2

|∇(wn − uk)|p(x)ϕ′n dx

=

�
Ω2

|∇(wn − uk)|p(x)(ϕ′n)
p(x)
2

(|∇wn|+ |∇uk|)
(2−p(x))p(x)

2

(ϕ′n)
1− p(x)

2 (|∇wn|+ |∇uk|)
(2−p(x))p(x)

2 dx,

we obtain by Hölder’s inequality and Lemma 2.3, that:

1

2

�
Ω2

|∇(wn − uk)|p(x)ϕ′n dx

≤ C
∥∥∥ |∇(wn − uk)|p(x)(ϕ′n)

p(x)
2

(|∇wn|+ |∇uk|)
(2−p(x))p(x)

2

∥∥∥
L

2
p(·) (Ω2)

·
∥∥∥(ϕ′n)1− p(x)

2 (|∇wn|+ |∇uk|)
(2−p(x))p(x)

2

∥∥∥
L

2
2−p(·) (Ω2)

≤ Cmax

{(�
Ω

|∇(wn − uk)|2ϕ′n
(|∇wn|+ |∇uk|)2−p(x))

)2/p+

,

(�
Ω

|∇(wn − uk)|2ϕ′n
(|∇wn|+ |∇uk|)2−p(x))

)2/p−}

≤ Cmax

{(�
Ω

(|∇wn|p(x)−2∇wn − |∇uk|p(x)−2∇uk) · ∇(wn − uk)ϕ
′
n dx

)2/p+

, (· · · )2/p
−

}

≤ Cmax

{(
ε

�
Ω

|∇wn −∇uk|p(x)|ϕn| dx
)2/p+

,

(
ε

�
Ω

|∇wn −∇uk|p(x)|ϕn| dx
)2/p−}

+ o(1),

(4.13)

where we have used (4.10) and (4.8). Using again the boundedness of wn, uk and
|ϕn| we have by (4.13) that:

(4.14) lim sup
n→∞

�
Ω2

|∇(wn − uk)|p(x)ϕ′n dx ≤ Cmax
{
ε2/p

+
, ε2/p

−
}
.

Combining (4.12) and (4.14), observing that ϕ′n ≥ 1 and letting ε→ 0, we conclude

the strong convergence of wn to uk in W
1,p(·)
0 (Ω).

Hence for any ϕ ∈W
1,p(·)
0 (Ω) ∩ L∞(Ω):

•
�
Ω |∇wn|p(x)−2∇wn · ∇ϕdx→

�
Ω |∇uk|p(x)−2∇uk · ∇ϕdx since the term

|∇wn|p(·)−2∇wn

is bounded in Lp′(·)(Ω) and |∇wn|p(x)−2∇wn → |∇uk|p(x)−2∇uk a.e. in Ω, so
we may apply Lemma 2.7.

•
�
ΩHn(x,∇wn)ϕdx→

�
Ω |∇uk|q(x)ϕdx again by Lemma 2.7 since

Hn(x,∇wn) → |∇uk|q(x)

a.e. in Ω and Hn(x,∇wn) is bounded in Lp(·)/q(·)(Ω).

•
�
Ω g(x)(Tk(wn))

η(x)ϕdx→
�
Ω g(x)(Tk(uk))

η(x)ϕdx by Lebesgue’s Theorem.

Therefore, uk solves (4.2).
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We are now in position to prove Theorem 3.2.

4.2. Proof of Theorem 3.2. For each n, let gn = Tn(g) and fn = Tn(f). By

Proposition 4.2 there is un ∈W
1,p(·)
0 (Ω), non-negative, so that:

(4.15)

{
−∆p(x)un + |∇un|q(x) = gn(x)(Tnun)

η(x) + fn(x), in Ω,
un = 0, on ∂Ω.

We start assuming that ∥∇un∥Lq(·)(Ω) ≥ 1 for all n. Taking Tk(un) as a test function

in (4.15) we derive:�
Ω
|∇Tkun|p(x) dx+

�
Ω
|∇un|q(x)Tkun dx

=

�
Ω
gn(x)(Tnun)

η(x)Tkun dx+

�
Ω
fn(x)Tkun dx

≤ k

(�
Ω
gn(x)u

η(x)
n dx

)
+ k∥fn∥L1(Ω).

(4.16)

In the case
�
Ω g(x)u

η(x)
n dx ≤ 1 we have:

(4.17)

�
Ω
|∇Tkun|p(x) dx+

�
Ω
|∇un|q(x)Tkun dx ≤ k∥f∥L1(Ω)

and when
�
Ω g(x)u

η(x)
n dx > 1 by Young’s inequality, Proposition 2.2 and (3.2) we

obtain:

�
Ω
|∇Tkun|p(x) dx+

�
Ω
|∇un|q(x)Tkun dx ≤ k

(�
Ω
gn(x)u

η(x)
n dx

)
+ k∥fn∥L1(Ω)

≤ εkq
−/η+

q−/η+

(�
Ω
gn(x)u

η(x)
n dx

)q−/η+

+ C(ε) + k||f ||L1(Ω)

≤ εkq
−/η+

q−/η+
∥g1/η(·)n un∥q

−

Lη(·)(Ω)
+ C(ε) + k||f ||L1(Ω)

≤ εkq
−/η+

C(g, η, q)q−/η+
∥∇un∥q

−

Lq(·)(Ω)
+ C(ε) + k||f ||L1(Ω).

(4.18)

Hence:

∥∇un∥q
−

Lq(·)(Ω)
≤

�
Ω
|∇un|q(x) dx

≤
�
Ω
|∇Tkun|q(x) dx+ k

�
{un≥k}

|∇un|q(x) dx

≤
�
Ω
|∇Tkun|p(x) dx+

�
{un≥k}

|∇un|q(x)Tkun dx+ |Ω| (by Young’s inequality)

≤ max

{
k∥f∥L1(Ω),

εkq
−/η+η+

C(g, η, q)q−
∥∇un∥q

−

Lq(·) + C(ε) + k||f ||L1(Ω) + |Ω|

}

(4.19)
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where we have used (4.17) and (4.18). Choosing ε small, we derive ∥∇un∥Lq(·)(Ω) ≤
C. Thus up to a subsequence:

• un ⇀ u in W
1,q(·)
0 (Ω);

• Tkun ⇀ Tku in W
1,p(·)
0 (Ω);

• un → u in Ls(·)(Ω), for s(·) < q∗(·).
If ∥∇un∥Lq(·)(Ω) ≤ 1 for a subsequence, we obtain the same conclusions. Using

ψk−1(un) = T1(Gk−1(un)) as a test function in (4.15) we derive:�
Ω

|∇ψk−1(un)|p(x) dx+

�
Ω

ψk−1(un)|∇un|q(x) dx

=

�
Ω

(
gn(x)(Tnun)

η(x) + fn(x)
)
ψk−1(un) dx.

(4.20)

The last integral may be divided as:�
{un≥k}

(
gn(x)(Tnun)

η(x) + fn(x)
)
ψk−1(un) dx

�
{k−1≤un≤k}

(
gn(x)(Tnun)

η(x) + fn(x)
)
ψk−1(un) dx,

(4.21)

since ψk−1(un) = 0 if un ≤ k−1. Moreover, since un is uniformly bounded in L1(Ω)
we derive by Chebyshev’s inequality that:

| {x ∈ Ω : k ≤ un} | → 0(4.22)

uniformly in n as k → ∞. By the definition of ψk−1 and Hölder’s inequality we
have:

�
{un≥k}

(
gn(x)(Tnun)

η(x) + fn(x)
)
ψk−1(un) dx

+

�
{k−1≤un≤k}

(
gn(x)(Tnun)

η(x) + fn(x)
)
ψk−1(un) dx

≤
�
{un≥k−1}

(
g(x)uη(x)n + f(x)

)
dx

≤
(
∥g∥L(q∗(·)/η(·))′ ({un≥k−1})∥u

η(·)
n ∥Lq∗(·)/η(·)(Ω) + ∥f∥L1({un≥k−1})

)
≤ max


(�

{k−1≤un}
g(x)

[
q∗(x)
η(x)

]′
dx

)1/γ−

,

(�
{k−1≤un}

g(x)

[
q∗(x)
η(x)

]′
dx

)1/γ+ ∥uη(·)n ∥
L

q∗
η (Ω)

+ ∥f∥L1({un≥k−1}).

(4.23)

where:

γ(·) =
(
q∗(·)
η(·)

)′
.

Now, by the weak convergence of un to u in W
1,q(·)
0 (Ω), there is C > 1 so that:�

Ω
uq

∗(·)
n dx ≤ C.
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Hence, u
η(·)
n is bounded in Lq∗(·)/η(·)(Ω). Moreover, by (4.22):

max


(�

{k−1≤un}
g(x)[q

∗(x)/η(x)]′ dx

)1/γ−

,

(�
{k−1≤un}

g(x)[q
∗(x)/η(x)]′ dx

)1/γ+


+ ∥f∥L1({un≥k−1})

goes to 0 as k → ∞, uniformly in n. Thus:

�
{un≥k}

(
gn(x)u

η(x)
n + fn(x)

)
ψk−1(un) dx

+

�
{k−1≤un≤k}

(
gn(x)u

η(x)
n + fn(x)

)
ψk−1(un) dx→ 0

as k → ∞ uniformly in n. It follows that:

(4.24) lim
k→∞

�
{un≥k}

|∇un|q(x) dx = 0, uniformly in n.

Now we want to prove that for each fix k we have:

Tkun → Tku strongly in W
1,q(·)
0 (Ω).

Take vn = ϕ(Tk(un)− Tk(u)) as a test function in (4.15) (where ϕ satisfies (4.7)).
We get:

�
Ω
|∇un|p(x)−2∇un · ∇(Tk(un)− Tk(u))ϕ

′
n dx+

�
Ω
|∇un|q(x)vn dx

=

�
Ω
fn(x)vn dx+

�
Ω
gn(x)(Tnun)

η(x)vn dx,

(4.25)

with ϕ′n = ϕ′(Tk(un)− Tk(u)). Firstly, the term:

(4.26)

�
Ω
fn(x)vn dx→ 0 as n→ ∞

by Lebesgue’s Theorem. Now we treat the term:

�
Ω
gn(x)(Tnun)

η(x)vn dx.

Since u
η(·)
n is bounded in Lq∗(·)/η(·)(Ω), there is w ∈ Lq∗(·)/η(·)(Ω) so, up to subse-

quence, that:

(4.27) uη(·)n ⇀ w in Lq∗(·)/η(·)(Ω).

Since we also have uηn → uη a.e., we conclude that w = uη(·) by Lemma 2.7. By
Egorov’s Theorem, for each ε there is a measurable set Aε so that |Aε| < ε and Tkun
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converges to Tku uniformly in Ω \Aε. Then:�
Ω
gn(x)(Tnun)

η(x)vn dx =

�
Ω\Aj

gn(Tnun)
η(x) [ϕ(Tkun − Tku)] dx

+

�
Aj

gn(x)(Tnun)
η(x) [ϕ(Tkun − Tku)] dx

≤ o(1)

�
Ω
g(x)uη(x)n dx+ ϕ(2k)

�
Aj

g(x)uη(x)n dx

When n→ ∞, the first term in the last equality tends to 0 (by (4.27), the fact that

g ∈ L(q∗(·)/η(·))′(Ω) and the uniform convergence of Tkun to Tku) and the last term
converges to:

ϕ(2k)

�
Aj

g(x)uη(x) dx

which can be arbitrarily small. Thus:

(4.28)

�
Ω
gn(x)(Tnun)

η(x)vn dx→ 0.

In (4.25) we decompose:

�
Ω
|∇un|p(x)−2∇un · ∇(Tk(un)− Tk(u))ϕ

′
n dx

as the sum: �
Ω
|∇Tkun|p(x)−2∇Tkun · ∇(Tk(un)− Tk(u))ϕ

′
n dx

+

�
Ω
|∇Gkun|p(x)−2∇Gkun · ∇(Tk(un)− Tk(u))ϕ

′
n dx.

(4.29)

Since Gk(un) = 0 in {un ≤ k}, we have that the last term in (4.29) equals:

(4.30) −
�
Ω
|∇Gk(un)|p(x)−2∇Gk(un) · ∇Tk(u)χ{un≥k}ϕ

′
n dx.

Observe that:

∇Tk(u)χ{un≥k}ϕ
′
n → 0

a.e. in Ω and by Lebesgue’s Theorem, the convergence is in Lr(·)(Ω) for all r(·) ≤ p(·).
Now we shall prove that there is C > 0 so that1:

(4.31)

�
Ω
|∇Gk(un)|p(x) dx ≤ C for all n.

Observe that (4.31) and the boundedness of Tkun imply that u ∈W
1,p(·)
0 (Ω) since:�

Ω
|∇un|p(x)dx ≤

�
Ω
|∇Tk(un)|p(x)dx+

�
Ω
|∇Gk(un)|p(x)dx ≤ C

1Observe that the boundedness of ∇Gk(un) holds automatically when p = q by (4.24), that is
the case in [7].
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for some C > 0. Next, to prove (4.31), take Gk(un) as a test function in (4.15) we
derive:

�
Ω
|∇Gk(un)|p(x) dx =

�
Ω
|∇un|p(x)−2∇un · ∇Gk(un) dx

≤
�
Ω
gn(x)Tn(un)

η(·)Gk(un) dx+

�
Ω
fn(x)Gk(un) dx.

The uniform boundedness follows by the assumptions on g and f (see the conditions

on the exponents (3.1)) and the fact that un is uniformly bounded in Lq∗(·)(Ω).
Hence:

|∇Gk(un)|p(x)−2∇Gk(un)

is uniformly bounded in Lp′(·)(Ω) for large n and thus (4.30) is of order o(1).
The first term in (4.29) is re-writing as:

�
Ω
|∇Tkun|p(x)−2∇Tkun · ∇(Tk(un)− Tk(u))ϕ

′
n dx

=

�
Ω

(
|∇Tkun|p(x)−2∇Tkun − |∇Tku|p(x)−2∇Tku

)
· ∇(Tk(un)− Tk(u))ϕ

′
n dx

+

�
Ω
|∇Tku|p(x)−2∇Tku · ∇(Tk(un)− Tk(u))ϕ

′
n dx

(4.32)

The last term in (4.32) tends to 0 as n → ∞ by Lemma 2.8. Summarizing, from
(4.25), (4.26), (4.28), (4.29) and (4.32), we obtain:

0 ≤
�
Ω

(
|∇Tkun|p(x)−2∇Tkun − |∇Tku|p(x)−2∇Tku

)
· ∇(Tk(un)− Tk(u))ϕ

′
n dx

= −
�
Ω
|∇un|q(x)vn dx+ o(1)

= −
�
{un<k}

|∇un|q(x)vn dx−
�
{un≥k}

|∇un|q(x)vn dx+ o(1)

≤ −
�
{un<k}

|∇un|q(x)vn dx+ o(1).

(4.33)

Observe that:

(4.34)

�
{un<k}

|∇un|q(x)vn dx =

�
{un<k}

|∇Tkun|q(x)vn dx =

�
Ω
|∇Tkun|q(x)vn dx.

Since |∇Tkun|q(x) is bounded in L
p(·)
q(·) (Ω) and vn is uniformly bounded and converges

pointwise to 0, we derive, up to subsequence, that |∇Tkun|q(x)vn ⇀ 0 in L
p(·)
q(·) (Ω),

by Lemma 2.7. Therefore:�
Ω

(
|∇Tkun|p(x)−2∇Tkun − |∇Tku|p(x)−2∇Tku

)
· ∇(Tk(un)− Tk(u))ϕ

′
n dx = o(1).
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By Theorem 2.6, we derive the strong convergence of Tkun to Tku in W
1,p(·)
0 (Ω), and

hence in W
1,q(·)
0 (Ω).

Finally, for any φ ∈W
1,p(·)
0 (Ω) ∩ L∞(Ω), we shall prove that:�

Ω
|∇un|p(x)−2∇un · ∇φdx+

�
Ω
|∇un|q(x)φdx

=

�
Ω
gn(x)(Tnun)

η(x)φdx+

�
Ω
f(x)φdx

(4.35)

converges to:�
Ω
|∇u|p(x)−2∇u · ∇φdx+

�
Ω
|∇u|q(x)φdx =

�
Ω
g(x)uη(x)φdx+

�
Ω
f(x)φdx.

For the convergence of the first term we proceed as follows:�
Ω
|∇un|p(x)−2∇un · ∇φdx =

�
{un≥k}

|∇un|p(x)−2∇un · ∇φdx

+

�
{un≤k}

|∇Tkun|p(x)−2∇Tkun · ∇φdx.

For the last term we have the facts (consequences of the strong convergence of Tkun
to Tku):

(1) |∇Tkun|p(x)−2∇Tkun · ∇φχ{un≤k} → |∇Tku|p(x)−2∇Tku · ∇φχ{u≤k} a.e. in
Ω.

(2) |∇Tkun|p(x)−2∇Tkun is bounded in Lp′(·)(Ω).

Hence, by Lemma 2.7:

lim
n→∞

�
{un≤k}

|∇Tkun|p(x)−2∇Tkun · ∇φdx =

�
Ω
|∇Tku|p(x)−2∇Tku · ∇φdx.

Thus, by (4.24) and the assumption p(·)− 1 ≤ q(·), we derive:
(4.36)

lim
n→∞

�
Ω
|∇un|p(x)−2∇un · ∇φdx =

�
Ω
|∇Tku|p(x)−2∇Tku · ∇φdx+ o(1), as k → ∞.

Recalling that u ∈ W
1,p(·)
0 (Ω), it follows that |∇Tku|p(x)−2∇Tku is bounded in

Lp′(·)(Ω), hence making k → ∞ in (4.36) and appealing again to Lemma 2.7 it
follows the desired convergence.

Next, we deal the second term in (4.35). Indeed, we will derive that |∇un|q(x) →
|∇u|q(x) strongly in L1(Ω) by appealing to Vitali’s Lemma. First, we show that

|∇un|q(·) is uniformly integrable. Indeed, let ε > 0. By (4.24), there is k so that:

(4.37)

�
{un≥k}

|∇un|q(x) dx <
ε

3
for all n.

Let now δ0 > 0 be so that for any measurable set E with |E| < δ0, there holds:

(4.38)

�
E
|∇Tku|q(x) dx <

ε

3
.
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By the strong convergence of Tkun to Tku in W
1,q(·)
0 (Ω) we derive that there is N

(depending on ε and k) so that n ≥ N implies for any |E| < δ0:

(4.39)

�
E
|∇Tkun|q(x) dx <

ε

3
+

�
E
|∇Tku|q(x) dx <

2ε

3

in view of (4.38). Thus, for any n ≥ N and any set |E| < δ0 we have by (4.37) and
(4.39) that:�

E
|∇un|q(x) dx ≤

�
{un≥k}∩E

|∇un|q(x) dx+

�
E
|∇Tkun|q(x) dx < ε.

Moreover, for any i ∈ {1, ..., N − 1}, there is δi > 0 so that for any |E| < δi:�
E
|∇ui|q(x) dx < ε, i = 1, ..., N − 1.

Therefore, the uniform integrability follows by choosing δ = min {δ0, δ1, ..., δN−1}.
We also observe that, by the strong convergence of truncates, |∇un|q(x) → |∇u|q(x)
a. e. in Ω. Hence, by Vitali’s Convergence Theorem, we derive |∇un|q(x) → |∇u|q(x)
strongly in L1(Ω).

Finally, we treat the statement:

(4.40)

�
Ω
gn(Tnun)

η(x)φdx→
�
Ω
guη(x)φdx as n→ ∞.

Write: �
Ω
guη(x)φdx−

�
Ω
gn(Tnun)

η(x)φdx

=

�
Ω
g(uη(x) − uη(x)n )φdx+

�
Ω
g[uη(x)n − (Tnun)

η(x)]φdx

+

�
Ω
(g − gn)(Tnun)

η(x)φdx.

Now:

• The convergence: �
Ω
g(uη(x) − uη(x)n )φdx→ 0

holds by the weak convergence of u
η(x)
n to uη(x) in Lq∗(·)/η(·)(Ω) and the

assumptions on g.
• Observe that for a. e. x, un(x) → u(x) as n → ∞. Hence, Tnun(x) → u(x)
a. e. On the other hand,�

Ω
|uη(x)n − (Tnun)

η(x)|q∗(x)/η(x)dx ≤
�
Ω
|un|q

∗(x)dx ≤ C.

Hence, by Lemma 2.7, u
η(x)
n − (Tnun)

η(x) ⇀ 0 in Lq∗(·)/η(·)(Ω), and conse-
quently, �

Ω
g[uη(x)n − (Tnun)

η(x)]φdx→ 0.
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• Finally, �
Ω
(g − gn)(Tnun)

η(x)φdx→ 0

by Hölder’s inequality, the convergence gn → g in L(q∗(·)/η(·))′(Ω) and the

boundedness of u
η(·)
n in Lq∗(·)/η(·)(Ω).

This proves statement (4.40) and the proof of the theorem is finished.

5. Proof of Theorem 3.4

The proof mainly goes as for Theorem 3.2 for p(·) ≥ 2. We point out the differ-
ences. Firstly, we choose:

ϕ = s exp
(
2(4p

+−2)s2
)

and (4.7) is now:

(5.1) ϕ′ − 22p
+−1ϕ ≥ C > 0.

Next, (4.9) reads as:

�
Ω

|∇wn|p(x)

1 + 1
n |∇wn|p(x)

ϕndx ≤
�
Ω
|∇wn|p(x)ϕndx

≤ 2p
+−1

�
Ω
|∇wn −∇uk|p(x)ϕndx+ o(1),

(5.2)

and hence (4.11) yields:

(5.3)

�
Ω
|∇(wn − uk)|p(x)ϕ′n dx ≤ 22p

+−1

�
Ω
|∇wn −∇uk|p(x)|ϕn| dx+ o(1).

The strong converge of wn to uk in W
1,p(·)
0 (Ω) is obtained appealing to (5.1) and

to (5.3). Moreover, since we are not allowed to use Lemma 2.7, the convergence�
ΩH(x,∇wn)ϕdx→

�
Ω |∇uk|p(x)ϕdx may be obtained as2:

∣∣∣ �
Ω
ϕ

(
H(x,∇wn)−

|∇uk|p(x)

1 + 1
n |∇wn|p(x)

+
|∇uk|p(x)

1 + 1
n |∇wn|p(x)

− |∇uk|p(x)
)
dx
∣∣∣

≤ C

(�
Ω
||∇wn|p(x) − |∇uk|p(x)|+

�
Ω

(
1− 1

1 + 1
n |∇wn|p(x)

)
|∇uk|p(x) dx

)
= o(1),

where we have used the strong convergence of wn to uk inW
1,p(·)
0 (Ω) and Lebesgue’s

Theorem for the last integral. Regarding the proof of Theorem 3.2, we first point

2Observe that this argument is also valid for q(·) < p(·).
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out that the boundedness (4.31) is obtained directly from (4.24). Moreover, the
other part to be changed is (4.34), since we cannot use Lemma 2.7. Now, we write:�

Ω
|∇Tkun|p(x)vn dx

=

�
Ω
|∇Tkun|p(x)−2∇Tkun · ∇Tkun vn dx

+

�
Ω
|∇Tku|p(x)−2∇Tku · ∇(Tkun − Tku)vn dx

−
�
Ω
|∇Tku|p(x)−2∇Tku · ∇(Tkun − Tku)vn dx

+

�
Ω
|∇Tkun|p(x)−2∇Tkun · ∇Tku vn dx

−
�
Ω
|∇Tkun|p(x)−2∇Tkun · ∇Tku vn dx

=

�
Ω

(
|∇Tkun|p(x)−2∇Tkun − |∇Tku|p(x)−2∇Tku

)
· ∇(Tkun − Tku)vn dx

+ o(1),

where the terms: �
Ω
|∇Tku|p(x)−2∇Tku · ∇(Tkun − Tku)vn dx

and: �
Ω
|∇Tkun|p(x)−2∇Tkun · ∇Tku vn dx

converge to 0 by Lemma 2.8. Hence, by (4.33), it follows:�
Ω

(
|∇Tkun|p(x)−2∇Tkun − |∇Tku|p(x)−2∇Tku

)
· ∇(Tk(un)− Tk(u))ϕ

′
n dx

≤
�
Ω

(
|∇Tkun|p(x)−2∇Tkun − |∇Tku|p(x)−2∇Tku

)
· ∇(Tkun − Tku)|vn| dx

+ o(1).

Appealing to (5.1), we derive the strong convergence of ∇wn to ∇uk in Lp(·)(Ω).
The rest of the proof is the same as for Theorem 3.2.

Remark 5.1. Regarding the extension of Theorem 3.4 to all values of p(x), we
point out that in the singular framework, the absence of ε in (5.2) brings difficulties
in order to deal with inequality (4.13) and hence to obtain the key control (4.14).
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[16] D. Edmunds and J. Rákosńık, Sobolev embeddings with variable exponent. Studia Math. 143

(2000): 267-293.
[17] X. Fan. Existence and uniqueness for the p(x)-Laplace equations. Mathematische Nachrichten

284 11-12 (2011), 1435-1445.
[18] X. Fan, Y. Zhao and Q. Zhang, A strong maximum principle for p(x)-Laplaca equations.

Chinese J. Contemp. Math. 24 3 (2003): 277-282.
[19] X. Fan and D. Zhao,, Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlineae

Analysis 52 (2003): 1843-1852.
[20] X. Fan and D. Zhao, The quasi-minimizer of integral functionals with m(x)-growth conditions.

Nonlinear Analysis 39 (2000): 807-816.
[21] X. Fan and D. Zhao, A class od De Giorgi type and Hölder continuity. Nonlinear Analysis 36
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