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Abstract. In this work, we study the existence of global and non-trivial weak solutions to the following problem

with critical growth and involving the p-fractional magnetic Laplacian (−∆A
p )

s:

M
(
[u]As,p

)
(−∆A

p )
su+ V (x)|u|p−2u = |u|p

∗
s−2u in RN , N ≥ 3.

Here M is a Kirchhoff function, V is a scalar potential, and p∗s = Np/(N − sp) is the critical fractional Sobolev

exponent. The solvability is proved by appealing to critical point theory, without the Palais-Smale condition,

under a careful analysis of the fractional magnetic gradients and the critical term. To treat this latter contribution,

we develop a concentration compactness principle for bounded sequences in appropriate magnetic Sobolev spaces.

1. Introduction

In this paper, we establish a concentration compactness principle for magnetic fractional Sobolev spaces and

we apply it to study global weak solutions to the following critical-growth problem

(1.1) M
(
[u]As,p

)
(−∆A

p )
su+ V (x)|u|p−2u = |u|p∗s−2u in RN ,

1
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where s ∈ (0, 1), 1 < p < p∗s, and p∗s = Np/N − sp is the critical Sobolev exponent in the embedding

W s,p(RN ) ↪→ Lq(RN ). Moreover, the leading operator (−∆A
p )

s is the p-fractional magnetic operator defined

for a sufficiently smooth function u and up to a multiplicative constant as

(1.2) (−∆A
p )

su(x) := 2P.V.

�
RN

|Ds,Au(x, y)|p−2Ds,Au(x, y)
dy

|x− y|N+s
x ∈ RN ,

with A : RN → RN is a given vector field, and

Ds,Au(x, y) =
u(x)− ei(x−y)·A(x+y

2 )u(y)

|x− y|s
.

In addition, V : RN → R is a potential, and M : R+ → R+ is a Kirchhoff function. Physical motivation for

studying the operator (1.2) are given in [25] and [26] (see also the introduction of [16]).

Equation (1.1) has different contributions. Firstly, the operator (−∆A
p )

s arises as a non-local generalization

of the (real part of the) magnetic Schrödinger operator defined as

(1.3) −(∇− iA)2u(x) = −∆u(x) + 2iA(x) · ∇u+ |A(x)|2u+ iu divA(x).

In this context, the field B = ∇× A represent a magnetic field acting on a charged particle, like an electron.

When N = 3, B is the usual curl operator. For general N , B = (Bjk) where

Bjk := ∂jAk − ∂kAj .

When there is also a conservative electric field acting on the particle, the scalar function V represents its

potential. The magnetic Schrödinger operator has been studied extensively in the last decades. We refer the

reader to the references [6], [8], [15], and [36], among many others. Regarding the Kirchhoff term M
(
[u]As,p

)
,

we first recall that Kirchhoff [27] introduced a model for a vibrating string given by

ρ
∂2u

∂t2
−
(
ρ0
h

+
E

2L

� L

0

∣∣∂u
∂x

∣∣) ∂2u

∂x2
= 0,
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where L is the length of the string, h the area of the cross-section, E is the Young modulus of the material,

ρ is the mass density, and ρ0 the initial tension. That equation constitutes an extension of the D’Alembert’s

classical wave equation, since it takes into account the changes in length of the string under vibration. There

have been further generalizations of the Kirchhoff model. In particular, we quote the nice article [23], where

the authors studied the existence of non-negative weak solutions for a nonlocal Kirchhoff type problem of the

form

M

(�
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)
(−∆)su = λf(x, u) + |u|2∗−2u.

In this case, the tension M depends on the fractional length of the string.

A pioneering work treating local elliptic problem with critical exponent is [13]. Afterwards, many papers

have considered similar problems in different context. However, in this brief review, we will focus on those

for nonlocal problems in the magnetic framework. The first work considering the fractional magnetic operator

with lower order terms is [16] (in the spirit of the seminal work [18]). In this work, the authors proved existence

of global weak solutions for minimization problems in the subcritical case, under constraints and involving the

operator (1.2) for p = 2 and N = 3. The existence is provided for radial Sobolev functions or under further

assumptions on the magnetic potential A. In the critical case, they did not show existence, but they gave a

representation of solutions similar to the case A = 0 and proved some nonexistence results. Multiplicity results

for subcritical problems in bounded domains are given in [22], while for unbounded domain are provided in

[34] for the p-fractional magnetic operator, and in [31] in the more general context of Orlicz-Sobolev spaces.

Problems depending on a parameter ε > 0 of the form

(1.4) Mε([u]
2
A,s)(−∆)sε−1Au+ V (x)u = f(x, |u|)u+K(x)|u|r−2u, in RN ,
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have been also considered extensively in the literature by appealing to different techniques like penalization,

Nehari method, and Ljusternik-Schnirelman theory, among many others (see for instance [1], [2], [3], [4], [10],

[37], and the references therein). We point out that in the previous list of references, the subcritical, critical

and supercritical cases were studied for (1.4), varying also the assumptions on M , the potential V , and the

nonlinearity f . The interest in solutions uε of (1.4) and their behaviour as ε → 0 are motivated from the fact

that the transition from quantum mechanics to classical mechanics can be performed formally in the time-

dependent Schrödinger equation letting ε → 0. We refer the reader to the nice book [5] where a complete

review of recent references on the subject is given.

The energy functional I : Ds,p
A,V (R

N ) → R associated to Equation (1.1) is given by

I(u) =
1

p
M
(
[u]As,p

)
+

1

p

�
RN

V (x)|u|p dx− 1

p∗s

�
RN

|u|p∗s dx.

To get existence of solutions to (1.1) we will look for critical points of the functional I. However, the

functional does not satisfy in general the Palais-Smale condition due to the presence of the critical exponent in

the right-hand side of (1.1). To overcome this difficulty we develop a concentration compactness principle based

on Lions’s results [28] adapted to magnetic fractional Sobolev spaces. The Lions’ result has been extended to

different contexts see for example [19], [30] and [33]. The statement is the following:

Theorem 1.1. Let {uk} ⊂ Ds,p
A,V (R

N ) be a weakly convergent sequence with limit u ∈ Ds,p
A,V (R

N ). Then there

exist: two bounded measures µ and ν, an at most countable set J , and positive real numbers ηj, νj, j ∈ J , such

that

(1.5) |DA
s uk|p dx ⇀ µ ≥ |DA

s u|p dx+
∑
j

µjδxj ,

(1.6) |uk|p
∗
s dx ⇀ ν = |u|p∗s dx+

∑
j

νjδxj ,
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and

(1.7) S
1/p
A ν

1/p∗s
j ≤ µ

1/p
j , for all j ∈ J,

where

SA := inf
u∈Ds,p

A (RN ),u̸=0

[u]As,p
∥u∥pp∗s

> 0.

We refer the reader to Section 2 for the function notation and a discussion of SA.

Afterwards, we will apply a version of the mountain pass theorem [7] to obtain a Palais-Smale (PS-) sequence.

The lack of compactness prevents us to prove the strong convergence of the sequence. However, the presence

of the potential V and the diamagnetic inequality (2.4) will allow us to apply compactness results from [29]

into real Sobolev fractional spaces. These results, together with the concentration compactness principle and

a careful treatment of the magnetic fractional gradients, will help us to state local convergence of the PS-

sequence in the critical Sobolev spaces Lp∗s and pointwise convergence of the magnetic fractional gradients. In

this way we obtain the second main result of the paper (we refer the reader to Section 2 for a discussion of the

assumptions).

Theorem 1.2. Assume (HM)1−(HM)3 on M and (V ) on the potential V . Suppose also that A ∈ L∞
loc(RN ,RN ).

Then, the Equation (1.1) has a non-trivial global weak solution u ∈ Ds,p
A,V (R

N ).

The paper is organized as follows. In Section 2 we will provide the basic assumptions, definitions and results

used in the manuscript. In Section 3, we will gain some insight into the fractional magnetic operator by giving

sufficient conditions for (−∆A
p )

s to be finite, and the relation between weak and pointwise solutions of (1.1).

Afterwards, in Section 4, we will provide the concentration compactness principle for our framework, while in

Sections 5 and 6, we will give the full proof of Theorem 1.2. This latter achievement will be done in a series of

steps.
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2. Preliminaries

2.1. Main assumptions. For the Kirchhoff function M = M(t) : R+ → R+, we will suppose the following:

(HM)1 M is continuous and for any α > 0, there exists δ = δ(α) such that

M(t) ≥ δ, for all t ≥ α, t ≥ 0.

(HM)2 Let

M(t) :=

� t

0
M(s) ds.

There exists θ ∈ (1, p∗s/p) such that

M(t)t ≤ θM(t), for all t ≥ 0.

(HM)3 There is c0 ∈ (0, 1) such that for all t ∈ [0, 1] there holds

M(t) ≥ c0t
θ−1.

The assumptions on the potential V = V (x) are the following:

(V) The function V : RN → R is non-negative, continuous in RN and satisfies

• V (x) ≥ V0 > 0 for all x ∈ RN ;

• There exists h > 0 such that for all c > 0,

lim
|y|→∞

| {x ∈ Bh(y) : V (x) ≤ c} | = 0.

Remark 2.1. The above assumptions for V are taken from the reference [35] in order to guarantee continuity

and compactness of inclusions between weighted Sobolev spaces and Lebesgue spaces. See next section for

further details.
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2.2. Functional framework. Define the Lebesgue space for p > 1,

Lp(RN ,C) :=
{
u : RN → C,

�
RN

|u(x)|p dx < ∞
}
,

and, for a non-negative V : RN → R, the weighted Lebesgue space

Lp
V (R

N ,C) :=
{
u : RN → C,

�
RN

|u(x)|pV (x) dx < ∞
}
.

For s ∈ (0, 1), denote by Ds,p(RN ) the completion of C∞
0 (RN ) with respect to

[u]s,p :=

�
R2N

|u(x)− u(y)|p

|x− y|sp
dη, dη :=

dx dy

|x− y|N
,

that is

Ds,p(RN ) :=
{
u ∈ Lp∗s (RN ) : [u]s,p < ∞

}
.

We will also use the next notation for fractional gradients of real functions φ:

(2.1) Dsφ(x, y) :=
φ(x)− φ(y)

|x− y|s

and

(2.2) |Dsφ(x)|p :=
�
RN

|Dsφ(x, y)|p
dy

|x− y|N
.

For a given magnetic potential A ∈ L∞
loc(RN ,RN ), we consider fractional magnetic spaces:

Ds,p
A (RN ,C) :=

{
u ∈ Lp∗s (RN ,C) : [u]As,p < ∞

}
where

[u]As,p :=

�
R2N

|Ds,Au(x, y)|pdη,

with
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Ds,Au(x, y) :=
u(x)− ei(x−y)·A(x+y

2 )u(y)

|x− y|s
.

We will also use the following notation for magnetic fractional gradients

(2.3) |DA
s u(x)|p :=

�
RN

|u(x)− ei(x−y)·A(x+y
2 )u(y)|p

|x− y|sp+N
dy,

so that

[u]As,p =

�
RN

|DA
s u(x)|p dx.

The space Ds,p
A (RN ,C) is equipped with the norm

∥u∥As,p = ([u]As,p + ∥u∥pp∗s )
1/p.

By (2.5) below, we obtain that

∥u∥ := ([u]As,p)
1/p

is an equivalent norm on Ds,p
A (RN ,C).

Finally, we consider the weighted fractional magnetic space of order s,

Ds,p
A,V (R

N ,C) :=
{
u ∈ Ds,p

A (RN ,C) :
�
RN

|u(x)|pV (x) dx < ∞
}

with the norm

∥u∥As,p,V :=

(
(∥u∥As,p)p +

�
RN

|u(x)|pV (x) dx

)1/p

.

Observe that since V (x) ≥ V0 > 0, we get u ∈ Lp(RN ). Moreover, we obtain that ∥u∥As,p,V is equivalent to

∥u∥ =

(�
RN

|u(x)|pV (x) dx+ [u]As,p

)1/p

.

We will use this norm in the sequel.
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For further reference, we introduce the best Sobolev constant in the embedding Ds,p
A (RN ,C) ↪→ Lp∗s (RN ,C).

Let

0 < S := inf
u∈Ds,p(RN ,R),u̸=0

[u]s,p
∥u∥pp∗s

.

By the diamagnetic inequality (for the proof see for instance [16])

(2.4) ||u(x)| − |u(y)|| ≤
∣∣∣∣u(x)− ei(x−y)A(x+y

2
)u(y)

∣∣∣∣,
if u ∈ Ds,p

A (RN ,C), then |u| ∈ Ds,p(RN ,R), hence by [17, Theorem 6.5]

S∥u∥pp∗s = S∥|u|∥pp∗s ≤ [|u|]s,p ≤ [u]As,p.

Thus,

(2.5) SA := inf
u∈Ds,p

A (RN ,C),u ̸=0

[u]As,p
∥u∥pp∗s

≥ S > 0.

We will usually omit R or C in the notation of Lebesgue and Sobolev spaces. The real or complex case will

be clear from the context.

2.3. Weak solutions. We next introduce the notion of weak solutions to (1.1).

Definition 2.2. We say that u ∈ Ds,p
A,V (R

N ) is a weak solution of (1.1) if

Re

[
M([u]As,p)

�
R2N

|Ds,Au|p−2Ds,AuDs,Aφdη +

�
RN

|u|p−2uφV (x) dx

]
= Re

[�
RN

|u|p∗s−2uφdx

]
,

for any φ ∈ Ds,p
A,V (R

N ).

We point out that by Hölder inequality and the facts that u ∈ Lp
V (R

N )∩Lp∗s (RN ), all the terms in the above

definition are finite.

Finally, we say that u is a pointwise solution of (1.1) if it satisfies the equation in the pointwise sense for a.

e. x in RN . In particular, (−∆A
p )

su < ∞ a.e. in RN .
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3. Preliminaries on the p-fractional magnetic Laplacian

In this section, we provide regularity conditions on u in order for (−∆A
p )

su to be finite a.e. in RN . The

discussion is inspired by [16]. However, unlike [16], we will not impose the boundedness of u. Instead, we will

consider a special class of locally integrable functions, called tail space, defined as

Lp−1
s (RN ) :=

{
u ∈ L1

loc(RN ) :

�
RN

|u(x)|p−1

1 + |x|N+sp
dx < ∞

}
.

Throughout this section, we will use the following notation for a function u : RN → C and x ∈ RN :

ux(y) := ei(x−y)A(x+y
2

)u(y), y ∈ RN .

Theorem 3.1. Assume A ∈ C2(RN ) and that u ∈ Lp−1
s (RN ) ∩ C1,α

loc (R
N ), with α ∈ (0, 1) such that α >

max {1− p(1− s), 0} if p ≥ 2, and α > max {1− p(1− s), 0} /(p− 1) if 1 < p < 2. Then,

(−∆A
p )

su(x) < ∞, a.e. in RN .

Proof. For 0 < ε < 1, define

g(x) :=

�
RN\B1(x)

|ux(x)− ux(y)|p−2(ux(x)− ux(y))

|x− y|N+sp
dy

and

gε(x) :=

�
B1(x)

|ux(x)− ux(y)|p−2(ux(x)− ux(y))

|x− y|N+sp
χε,x(y)dy,

where χε,x is the characteristic function of B1(x) \Bε(x).

We first treat the term g. Observe that by [20, Lemma A. 5], there exists C > 0 such that

|x− y| ≥ C(1 + |y|), y ∈ RN \B1(x).

Moreover, since u ∈ Lp−1
s (RN ), we have
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|g(x)| ≤
�
RN\B1(x)

|ux(x)− ux(y)|p−1

|x− y|N+sp
dy ≤ C

(�
RN\B1(x)

|u(x)|p−1

1 + |y|N+sp
dy +

�
RN\B1(x)

|u(y)|p−1

1 + |y|N+sp
dy

)
< ∞,

(3.1)

where we have also used that the constant function |u(x)| is also in Lp−1
s (RN ).

Regarding the second term gε, we write

gε(x) =
1

2

�
B1(x)

|ux(x)− ux(y)|p−2(ux(x)− ux(y))

|x− y|N+sp
χε,x(y)dy +

1

2

�
B1(x)

|ux(x)− ux(y)|p−2(ux(x)− ux(y))

|x− y|N+sp
χε,x(y)dy,

and we perform the change of variables h = y − x in the first integral, and h = x− y in the second one, to get

gε(x) =
1

2

�
B1(0)

|ux(x)− ux(x+ h)|p−2(ux(x)− ux(x+ h))

|h|N+sp
χε(h)dh

+
1

2

�
B1(0)

|ux(x)− ux(x− h)|p−2(ux(x)− ux(x− h))

|h|N+sp
χε(h)dh

=
1

2

�
B1(0)

(
|ux(x)− ux(x+ h)|p−2(ux(x)− ux(x+ h)) + |ux(x)− ux(x− h)|p−2(ux(x)− ux(x− h))

|h|N+sp

)
χε(h)dh.

where now χε is the characteristic function of B1(0) \Bε(0). Let J(ξ) = |ξ|p−2ξ, ξ ∈ R. Using the inequalities

([9, Lemma 2.4])

|J(a)− J(b)| ≤


Cp|a− b|(|a|p−2 + |b|p−2) if p ≥ 2

C ′
p|a− b|p−1 if 1 < p ≤ 2

, a, b ∈ R,

we obtain for 0 < |h| < 1,

∣∣∣∣|ux(x)− ux(x+ h)|p−2(ux(x)− ux(x+ h))− |ux(x)− ux(x− h)|p−2(ux(x− h)− ux(x))

∣∣∣∣
≤


Cp|2ux(x)− ux(x− h)− ux(x+ h)|(|ux(x)− ux(x− h)|p−2 + |ux(x)− ux(x+ h)|p−2) if p ≥ 2

C ′
p|2ux(x)− ux(x− h)− ux(x+ h)|p−1 if 1 < p ≤ 2.

(3.2)
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By [16, Lemma 2.5], we have that

(3.3) |2ux(x)− ux(x− h)− ux(x+ h)| ≤ C|h|1+α.

Therefore, by (3.2) and the assumption that u is locally bounded and C1
loc, we have for 0 < |h| < 1

∣∣∣∣ |ux(x)− ux(x+ h)|p−2(ux(x)− ux(x+ h)) + |ux(x)− ux(x− h)|p−2(ux(x)− ux(x− h))

|h|N+sp

∣∣∣∣
≤


Cp|h|1+α+p−2−N−sp if p ≥ 2

C ′
p|h|(1+α)(p−1)−N−sp if 1 < p ≤ 2.

(3.4)

Observe that the right-hand side of (3.4) is integrable in B1(0) by the assumptions on α. Hence, by dominated

convergence theorem,

(−∆A
p )

su(x) = g(x) + lim
ε→0

gε(x) < ∞ a.e.

Remark 3.2. Observe that as p → 2 from above or below, the lower bound in the Hölder exponent α goes to

2s− 1, which is the same bound in [16] for p = 2.

We observe that the constant C in (3.3) is the same for all x in a compact set K. Moreover, since u is locally

bounded and u ∈ Lp−1
s (RN ), we get |g(x)| ≤ C for all x ∈ K. Also, |gε(x)| ≤ C for all ε > 0 and x ∈ K by

(3.4). Hence,

(3.5) g + gε → (−∆A
p )

su in L1(K), as ε → 0.

We use this fact to prove the following relation between weak and pointwise solutions of (1.1).
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Theorem 3.3. Assume that A ∈ C2(RN ) and that u ∈ Lp−1
s (RN ) ∩ C1,α

loc (R
N ), with α ∈ (0, 1) such that

α > max {1− p(1− s), 0} if p ≥ 2, and α > max {1− p(1− s), 0} /(p− 1) if 1 < p < 2. If u ∈ Ds,p
A,V (R

N ,C) is

a weak solution of (1.1), then it is a pointwise solution in RN .

Proof. Let φ ∈ C∞
0 (RN ,C). Then,

�
R2N

|Ds,Au|p−2Ds,AuDs,Aφdη

= lim
ε→0

�
R2N

|ux(x)− ux(y)|p−2(ux(x)− ux(y))φx(x)− φx(y)

|x− y|N+sp
χε(y) dy dx, (χε := χRN\Bε(x))

= lim
ε→0

[�
RN

(g(x) + gε(x))φ(x) dx−
�
R2N

|ux(x)− ux(y)|p−2(ux(x)− ux(y))φx(y)

|x− y|N+sp
χε(y) dy dx

]
.

(3.6)

We observe that since φ is bounded, u ∈ Lp−1
s (RN ), and for ε > 0 fixed, the term

|ux(x)− ux(y)|p−2(ux(x)− ux(y))φx(y)

|x− y|N+sp
χε(y)

is integrable in R2N . Hence, by Fubini Theorem, we get

�
R2N

|ux(x)− ux(y)|p−2(ux(x)− ux(y))φx(y)

|x− y|N+sp
χε(y) dy dx = −

�
RN

(g(y) + gε(y))φ(y) dy,(3.7)

where we have used that

(ux(x)− ux(y))φx(y) = −(uy(y)− uy(x))φ(y).

Combining (3.5), (3.6) and (3.7), and letting ε → 0, we obtain

Re

[�
RN

(M([u]As,p)(−∆A
p )

su+ V (x)|u|p−2u− |u|p∗s−2u)φdy

]
= 0,

for all φ ∈ C∞
0 (RN ,C). This ends the proof of the Theorem.



14 MAGNETIC P-FRACTIONAL KIRCHHOFF PROBLEM

4. Concentration compactness principle

In this section we prove the concentration compactness principle Theorem 1.1. We follow some ideas from

[28] and [24], adapted to the nonlocal framework.

We start with a technical lemma which constitutes a compactness result for complex functions in our setting.

The proof follows analogously to [19, Lemma 2.4].

Lemma 4.1. Let 0 < s < 1 < p be such that sp < N and let p ≤ q < p∗s. Let w ∈ L∞(RN ) be such that there

exist α > 0 and C > 0 such that

0 ≤ w(x) ≤ C|x|−α, for all x ̸= 0.

Then, if α > sq − N q−p
p , we have Ds,p

A,V (R
N ) ⊂ Lq

w(RN ) compactly. That is, for any bounded sequence

{uk} ⊂ Ds,p
A,V (R

N ), there exist a subsequence {ukj} ⊂ {uk} and a function u ∈ Ds,p
A,V (R

N ) such that ukj ⇀ u

weakly in Ds,p
A,V (R

N ) and

(4.1)

�
RN

|ukj (x)− u(x)|q w(x)dx → 0 as j → ∞.

Proof. Let {uk} ⊂ Ds,p
A,V (R

N ) be a bounded sequence. Then, {uk} is also bounded in Lp(RN ). From the

reflexivity of Ds,p
A,V (R

N ) and Theorem 3.5 in [21] for the particular case when the Orlicz function is a power, it

follows that there exists u ∈ Ds,p
A,V (R

N ) and a subsequence (that we still denote by {uk}) such that

uk ⇀ u weakly in Ds,p
A (RN )

uk → u strongly in Lq
loc(R

N ).

(4.2)

Let R > 0 to be chosen later. We write

�
RN

|uk(x)− u(x)|q w(x)dx =

(�
|x|<R

+

�
|x|≥R

)
|uk(x)− u(x)|q w(x)dx = I + II.
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By Hölder’s inequality and Sobolev Poincaré inequality, we can bound II as follows

II ≤ C
(
∥uk∥qp∗s + ∥u∥qp∗s

)(�
|x|≥R

w

(
p∗s
q

)′

dx

) 1(
p∗s
q

)′

≤ C

(�
|x|≥R

w

(
p∗s
q

)′

dx

) 1(
p∗s
q

)′

.

Hence, using the hypothesis on w, we obtain that II goes to zero (uniformly in k) as R goes to infinity. So,

given ε > 0 we choose R > 0 such that II < ε for any k.

Finally, using the L∞ bound on w and (4.2), we can bound I to get

I ≤ ∥w∥∞∥uk − u∥qq;BR
→ 0 as k → ∞.

Combining all these estimates, we have

lim sup
k→∞

�
RN

|uk(x)− u(x)|q w(x)dx ≤ ε,

for every ε > 0. This finishes the proof.

Proof of Theorem 1.1. Since uk is bounded in Ds,p
A,V (R

N ), we have that uk ⇀ u, and that |uk|p
∗
s and |DA

s uk|p

are bounded in L1(RN ). Hence, there are Radon nonnegative measures ν and µ such that

|uk|p
∗
s dx ⇀ ν and |DA

s uk|p dx ⇀ µ.

Write

µ = µf +
∑
j∈J

µjδxj ,

where µf is a measure free of atoms. Since µ ≥ 0, then so is µf and hence

(4.3) µ ≥
∑
j∈J

µjδxj .
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Moreover, we may assume

µj = µ({xj}) > 0, for all j ∈ J.

Also, by the weak convergence,

µ(RN ) ≤ lim inf
k→∞

�
RN

|DA
s uk|p dx < ∞,

which implies that J is at most countable. Indeed, we have that the series

∑
j∈J

µj

converges in the sense of nets (that is,
{∑

j∈F µj ,⊂
}
with F ⊂ J finite, converges as a net). For each positive

integer n let

Sn :=

{
j ∈ J : µj >

1

n

}
.

Suppose that Sn is infinite. Then for a countable set S′
n ⊂ Sn,

∑
j∈S′

n
µj also converges (in the above sense)

and so the series ∑
j∈S′

n

µj

converges (in the usual sense of series). But this contradicts the definition of Sn. Thus, Sn is finite and since

J =
⋃
n

Sn

we conclude that J is at most countable.

Next, suppose that u = 0. We will obtain first the following reverse Hölder inequality:

(4.4) S
1/p
A

(�
RN

|ϕ|p∗s dν
)1/p∗s

≤
(�

RN

|ϕ|p dµ
)1/p

, for all ϕ ∈ C∞
0 (RN ).

Indeed, fix ϕ ∈ C∞
0 (RN ). We have by (2.5) that

SA∥ϕuk∥pp∗s ≤ [ϕuk]
A
s,p.
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Next, by adding and subtracting the term

ei(x−y)A(x+y
2

)ϕ(x)uk(y)

|x− y|N+sp

in DA
s (ϕuk) (recall (2.3)), we obtain that for any θ > 0, there exists Cθ > 0 such that

|DA
s (ϕuk)(x)|p ≤

�
RN

|ϕ(x)uk(x)− ei(x−y)A(x+y
2

)ϕ(x)uk(y)

+ ei(x−y)A(x+y
2

)ϕ(x)uk(y)− ei(x−y)A(x+y
2

)ϕ(y)uk(y)|p
dy

|x− y|N+sp

≤ (1 + θ)

�
RN

|ϕ(x)|p |uk(x)− ei(x−y)A(x+y
2

)uk(y)|p

|x− y|N+sp
dy

+ Cθ

�
RN

|uk(y)|p
|ϕ(x)− ϕ(y)|p

|x− y|N+sp
dy.

As a result,

(4.5) [ϕuk]
A
s,p =

�
RN

|DA
s (ϕuk)(x)|p dx ≤ (1 + θ)

�
RN

|ϕ(x)|p|DA
s uk(x)|p dx+ Cθ

�
RN

|uk(y)|p|Dsϕ(y)|p dy.

Now, by Lemma 2.2 in [19], the weight w = |Dsϕ|p satisfies the assumptions of Lemma 4.1 with p = q, and so

uk → 0 in Lp
w(RN ). Therefore,

SA

(�
RN

|ϕ|p∗s dν
)p/p∗s

= lim sup
n→∞

(
SA∥ϕuk∥pp∗s

)
≤ lim sup

k→∞
[ϕuk]

A
s,p

= lim sup
k→∞

�
RN

|DA
s (ϕuk)|p(x) dx

≤ (1 + θ) lim sup
k→∞

�
RN

|ϕ|p|DA
s uk|p dx (by (4.5))

≤ (1 + θ)

�
RN

|ϕ|p dµ.

(4.6)

Sending θ → 0 in the above inequalities, we get (4.4).
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Next, by approximation with smooth functions, we obtain for each Borel set A ⊂ RN ,

(4.7) S
1/p
A ν(A)1/p

∗
s ≤ µ(A)1/p.

Hence, ν is absolutely continuous with respect to µ and so, by Radon-Nykodym Theorem we may write

ν(A) =

�
A
Dµν dµ,

where the density is, for µ-a.e. x,

Dµν(x) = lim
ε→0

ν(B(x, ε))

µ(B(x, ε))
.

By (4.7),

ν(B(x, ε))

µ(B(x, ε))
≤ 1

S
p∗s/p
A

µ(B(x, ε))p
∗
s/p

µ(B(x, ε))
=

1

S
p∗s/p
A

µ(B(x, ε))p
∗
s/p−1 → 0,

as ε → 0 for µ-a.e. x in RN \ {xj}j∈J . Thus,

Dµν = 0

µ-a.e. in RN \ {xj}j∈J . Let now

νj := Dµν(xj)µj .

Then, for any borel set A

(4.8) ν(A) =

�
A
Dµν dµ =

�
⋃

xj∩A
Dµν dµ =

∑
j∈J

νjδxj (A).

By (4.7),

SAν(B(xj , ε))
p/p∗s ≤ µ(B(xj , ε)).

Sending ε → 0 gives

(4.9) SAν
p/p∗s
j ≤ µj .
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Combining (4.3), (4.8) and (4.9), we prove the theorem when u = 0. Next, suppose u ̸= 0. Then, define

vk = uk − u.

Thus, vk ⇀ 0 and moreover

∥DA
s vk∥p, ∥vk∥p∗s

are bounded. So, there are measures µ̂ and ν̂ so that

|DA
s vk|p dx ⇀ µ̂ and |vk|p

∗
s dx ⇀ ν̂,

µ̂ ≥
∑
j

µjδxj , ν̂ =
∑
j

νjδxj .

By the Brezis-Lieb Lemma [12, Theorem 1], for all ϕ ∈ C∞
0 (RN ), ϕ ≥ 0,

(4.10) lim
k→∞

�
RN

ϕ
(
|uk|p

∗
s − |uk − u|p∗s − |u|p∗s

)
dx = 0.

Since �
RN

ϕ|uk|p
∗
s dx →

�
RN

ϕdν,

�
RN

ϕ|uk − u|p∗s dx →
�
RN

ϕdν̂,

it follows from (4.10) that �
RN

ϕdν =

�
RN

ϕdν̂ +

�
RN

ϕ|u|p∗s dx.

Since the above equality holds for any nonnegative ϕ ∈ C∞
0 (RN ), we obtain

ν = |u|p∗s dx+
∑
j

νjδxj .

For the measure µ,

�
RN

ϕ|DA
s uk|p dx−

�
RN

ϕ|DA
s vk|p dx

=

�
RN

ϕ

� 1

0
p|DA

s uk − tDA
s u|p−2Re[(DA

s uk − tDA
s u)D

A
s u] dt dx.

(4.11)
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Since DA
s uk is bounded in Lp(RN ), we derive by (4.11) that there is w ∈ Lp′(RN ) such that

lim
k→∞

[�
RN

ϕ|DA
s uk|p dx−

�
RN

ϕ|DA
s vk|p dx

]
=

�
RN

ϕ Re[wDA
s u] dx.

On the other hand,

lim
k→∞

[�
RN

ϕ|DA
s uk|p dx−

�
RN

ϕ|DA
s vk|p dx

]
=

�
RN

ϕdµ−
�
RN

ϕdµ̂.

As a result, �
RN

ϕdµ−
�
RN

ϕdµ̂ =

�
RN

ϕ Re[wDA
s u] dx

which implies that µ and µ̂ have the same atoms:

∑
j

µjδxj .

Finally, since for each compact set K, uk ⇀ u in Ds,p
A (K) and |DA

s uk| dx ⇀ µ, there holds

(4.12)

�
K
|DA

s u|p dx ≤ lim inf
k→∞

�
K
|DA

s uk|p dx ≤ lim sup
k→∞

�
K
|DA

s uk|p dx ≤ µ(K).

Thus, if A ⊂ RN \
⋃
{xj}, is borel and bounded, then there is a sequence of compact sets Kj satisfying Kj ↗ A.

So, by (4.12) and monotone convergence Theorem,

µf (A) = lim
j→∞

µf (Kj) ≥ lim
j→∞

�
Kj

|Ds
Au|p dx =

�
A
|Ds

Au|p dx.

Therefore,

µf ≥ |DA
s u|p dx.

Hence, we conclude

µ ≥ |DA
s u|p dx+

∑
j

µjδxj .

As we wanted to prove.
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5. Mountain pass geometry of the energy functional

We recall the energy functional associated to the given Equation (1.1):

I(u) =
1

p
M
(
[u]As,p

)
+

1

p

�
RN

V (x)|u|p dx− 1

p∗s

�
RN

|u|p∗s dx, u ∈ Ds,p
A,V (R

N ).

The following mountain pass Theorem without the Palais-Smale condition will be used to get critical point

of I. Its proof can be found in [7, pag. 272].

Theorem 5.1. Let E be a Banach space and I ∈ C1(E,R). Suppose that there exist a neighbourhood U of 0

in E and a constant α satisfying the following conditions

(i) I(u) ≥ α for all u ∈ ∂U ,

(ii) I(0) < α,

(iii) there exists u0 /∈ U satisfying I(u0) < α.

Let

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = u0}

and

c = inf
γ∈Γ

max
u∈γ([0,1])

I(u) ≥ α.

Then, there exists a sequence uk ∈ E such that

I(uk) → c and I ′(uk) → 0 in E′,

as k → ∞.

A sequence satisfying the conclusion of Theorem 5.1 is called a Palais-Smale sequence.

In the next lemmas we will prove that I satisfies the geometric conditions of Theorem 5.1.
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Lemma 5.2. We have that I ∈ C1(Ds,p
A,V (R

N ),R).

Proof. Let u ∈ Ds,p
A,V (R

N ), we split

I(u) =
1

p
M
(
[u]As,p

)
+

1

p

�
RN

V (x)|u|p dx− 1

p∗s

�
RN

|u|p∗s dx = I1(u) + I2(u) + I3(u).

It is enough to prove that I1, I2, I3 ∈ C1(Ds,p
A,V (R

N ),R). We start computing the Gateux derivatives

⟨I ′1(u), φ⟩ =
1

p

d

dt
M
(
[u+ tφ]As,p

) ∣∣
t=0

= Re

[
M([u]As,p)

�
R2N

|Ds,Au|p−2Ds,AuDs,Aφdη

]
,

⟨I ′2(u), φ⟩ = Re

[�
RN

|u|p−2uφV (x) dx

]
,

and

⟨I ′3(u), φ⟩ = Re

[�
RN

|u|p∗s−2uφdx

]
.

We first prove that I2 ∈ C1(Ds,p
A,V (R

N ),R). In fact, suppose that uk → u in Ds,p
A,V (R

N ), then uk → u in

Lp
V (R

N ), by [[11], Theorem 4.9], there exists a subsequence that we will still denote uk such that uk → u a.e.

and h ∈ Lp
V (R

N ) such that |uk| ≤ h. Then,

|⟨I ′2(uk)− I ′2(u), φ⟩| =
∣∣∣∣Re

[�
RN

(|uk|p−2uk − |u|p−2u)φV (x) dx

] ∣∣∣∣
≤ ∥|uk|p−2uk − |u|p−2u∥p′,V ∥φ∥p,V .

As |uk|p−2uk − |u|p−2u → 0 a.e and ||uk|p−2uk − |u|p−2u|
p

p−1 ≤ |h|p + |u|p, by Dominated convergence

Theorem, it follows that I ′2(uk) → I ′2(u) as k goes to infinite. The proof of I3 ∈ C1(Ds,p
A,V (R

N ),R) follows

analogously, noting that by (2.5) if uk → u in Ds,p
A,V (R

N ), then uk → u in Lp∗s (RN ). Finally, to prove that

I1 ∈ C1(Ds,p
A,V ,R)(R

N ), observe that if uk → u in Ds,p
A,V (R

N ) so uk → u in Ds,p
A (RN ) and the proof follows

analogously.
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Lemma 5.3. The functional I satisfies the geometric conditions (i)− (iii) from Theorem 5.1.

Proof. First, observe that for α > 0, I(0) = 0 < α. Hence, I verifies (ii) trivially for any α > 0.

To prove that I satisfies (i), let U = B(0, ρ), with 0 < ρ < 1 to be chosen. If u ∈ ∂B(0, ρ), then

[u]As,p +

�
RN

V (x)|u|p dx = ρp.

Hence,

I(u) =
1

p
M([u]As,p) +

1

p

�
RN

V (x)|u|p dx− 1

p∗s
∥u∥p

∗
s

p∗s

≥ M(1)

p
([u]As,p)

θ +min {M(1), 1}
(�

RN

V (x)|u|p dx
)θ

− 1

SAp∗s
ρp

∗
s (by (HM)2, θ > 1)

≥ min {M(1), 1}
p

(
([u]As,p)

θ +

(�
RN

V (x)|u|p dx
)θ
)

− 1

SAp∗s
ρp

∗
s

≥ min {M(1), 1}
p

cθρ
pθ − 1

SAp∗s
ρp

∗
s

≥ α,

for some α > 0, choosing ρ small enough and recalling θ < p∗s/p by (HM)2.

Finally, we prove that I satisfies (iii). Let u be fixed such that [u]As,p = 1 and ∥u∥p,V > 0. For t > 0, we

consider tu. Then,

I(tu) =
1

p
M([tu]As,p) +

1

p

�
RN

V (x)|tu|p dx− 1

p∗s

�
RN

V (x)|tu|p∗s dx

≤ M(1)([tu]As,p)
θ + tp∥u∥pp,V − 1

p∗s
tp

∗
s∥u∥p

∗
s

p∗s ,V

≤ M(1)tpθ + tp∥u∥pp,V − 1

p∗s
tp

∗
s∥u∥p

∗
s

p∗s ,V
.

As p∗s
p > θ, taking limit as t goes to infinity, we can assure that I(tu) < 0. This completes the proof.
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By Lemma 5.2 and Lemma 5.3, there is a sequence uk ∈ Ds,p
A,V (R

N ) such that

I(uk) → c and I ′(uk) → 0 in (Ds,p
A,V (R

N ))′,

as k → ∞. In the next section we will study convergence properties of this sequence.

6. Existence of solutions to (1.1)

In this section we will prove that the limit of the Palais-Smale sequence uk founded in the previous section

is actually a solution of (1.1). We will prove that in a sequence of steps.

Lemma 6.1. The Palais-Smale sequence {uk} is bounded in Ds,p
A,V (R

N ).

Proof. First, we consider the case a = inf[uk]
A
s,p > 0. Using (HM)1 we can bound I(uk)− 1

p∗s
⟨I ′(uk), uk⟩ from

below. In fact,

I(uk)−
1

p∗s
⟨I ′(uk), uk⟩ ≥

1

p
M([uk]

A
s,p)−

1

p∗s
M([uk]

A
s,p)([uk]

A
s,p) +

(
1

p
− 1

p∗s

) �
RN

V (x)|uk|p dx

≥
(

1

θp
− 1

p∗s

)
δ[uk]

A
s,p +

(
1

p
− 1

p∗s

) �
RN

V (x)|uk|p dx

≥ min

{(
1

θp
− 1

p∗s

)
δ,

(
1

p
− 1

p∗s

)}
∥uk∥p, with δ = δ(d).

On the other hand,

I(uk)−
1

p∗s
⟨I ′(uk), uk⟩ ≤ I(uk) +

1

p∗s
∥I ′(uk)∥∥uk∥

≤ c1 + c2∥uk∥.

Thus,

C∥uk∥p ≤ c1 + c2∥uk∥.
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and it is easy to see that uk is bounded.

Suppose now that a = 0. If 0 is an isolated point, then we can build a subsequence that we still denote uk such

that a = inf[uk]
A
s,p > 0 and we proceed as before.

If 0 is not an isolated point, we have, up to a subsequence, that [uk]
A
s,p → 0 and we can use (HM)3, so as before

we obtain the following bound from below

(6.1) I(uk)−
1

p∗s
⟨I ′(uk), uk⟩ ≥ c0min

{(
1

θp
− 1

p∗s

)
,

(
1

p
− 1

p∗s

)}{
o(1) +

�
RN

V (x)|uk|p dx
}
.

Moreover,

(6.2) I(uk)−
1

p∗s
⟨I ′(uk), uk⟩ ≤ c1 + o(1) + c2

(�
RN

V (x)|uk|p dx
) 1

p

.

By (6.1) and (6.2) follows that if
�
RN V (x)|uk|p dx → ∞, we have a contradiction. So,

�
RN V (x)|uk|p dx is

bounded and consequently {uk} is bounded as well. The proof is completed.

Remark 6.2. Observe that since uk is bounded in Ds,p
A,V (R

N ), the sequence of real numbers [uk]
A
s,p is bounded

and hence, up to a subsequence not relabel,

[uk]
A
s,p → d, for some scalar d ≥ 0.

However, d > 0. Indeed, if d = 0, then by (2.5), ∥uk∥p∗s → 0. Hence, since I ′(uk) → 0 as k → ∞, we obtain

〈
I ′(uk), uk

〉
→ 0.

This implies that

�
RN

|uk|pV (x) dx → 0 as k → ∞.
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It then follows that

I(uk) → 0,

which contradicts the fact that the critical level c from Theorem 5.1 is positive.

Therefore, in what follows, we will assume that, up to a subsequence that we do not relabel,

[uk]
A
s,p → d > 0.

Since uk is a bounded sequence in Ds,p
A,V (R

N ), we can apply Theorem 1.1 to derive the existence of a countable

set {xj}j∈J and measures µ and ν so that the conclusions of Theorem 1.1 hold. By the properties of the sequence

uk we derive the following result.

Lemma 6.3. The set {xj}j∈J is finite.

Proof. Let xj be fixed and take ϕ ∈ C∞
0 (RN ) such that 0 ≤ ϕ ≤ 1 and

ϕ(x) =


1, if |x| ≤ 1

0, if |x| ≥ 2.

For ε > 0, define

ϕε(x) := ϕ

(
x− xj

ε

)
.

We first prove that ϕεuk is bounded (with respect to k) in Ds,p
A,V (R

N ). Clearly,

∥ϕεuk∥p,V ≤ ∥uk∥p,V ≤ C.

Next, by (4.5),

[ϕεuk]
A
s,p ≤ C

(�
RN

|ϕε(y)|p|DA
s uk(y)|p + |uk(y)|p|Dsϕε(y)|p dy

)
≤ C

(
[uk]

A
s,p +

�
RN

|uk(y)|p|Dsϕε(y)|p dy
)
.

(6.3)
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Observe that [uk]
A
s,p is bounded. Regarding the term

(6.4)

�
RN

|uk(y)|p|Dsϕε(y)|p dy,

we have by Corollary 2.3 in [19] that

|Dsϕε(x)|p ≤ Cmin
{
ε−sp, εN |x− xj |−(N+sp)

}
.

Therefore, |Dsϕε(x)|p is bounded. Moreover, since |uk| is bounded in Lp
V , so is in Lp and hence (6.4) is also

bounded.

Next, recall that

[uk]
A
s,p → d > 0.

Then,

M([uk]
A
s,p) → M(d) > 0.

Since I ′(uk) → 0, we may write

Re

[
M([uk]

A
s,p)

�
R2N

|Ds,Auk(x, y)|p−2Ds,Auk(x, y)Ds,A(ϕεuk(x, y)) dη

]
= −

�
RN

|uk|p−2ukϕεūkV (x) dx+

�
RN

|uk|p
∗
s−2ukϕεūk dx+ o(1)

= −
�
RN

|uk|pϕεV (x) dx+

�
RN

|uk|p
∗
sϕε dx+ o(1)

≤
�
RN

|uk|p
∗
sϕε dx+ o(1).

(6.5)

We write the first term in (6.5) as

M([uk]
A
s,p)Re

[�
R2N

|Ds,Auk(x, y)|pϕε(x) dη

+

�
R2N

|Ds,Auk(x, y)|p−2Ds,Auk(x, y)Dsϕε(x, y)e
i(x−y)A(x+y

2
)uk(y) dη

]
.

(6.6)
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We consider now the second term in (6.6). Since

|Ds,Auk(x, y)|p−2Ds,Auk(x, y)

is bounded in Lp′
η (R2N ), there is w1 = w1(x, y) ∈ Lp′

η (R2N ) such that, up to a subsequence

(6.7) |Ds,Auk(x, y)|p−2Ds,Auk(x, y) ⇀ w1 in Lp′
η (R2N ).

We next prove that

Dsϕε(x, y)e
i(x−y)A(x+y

2
)uk(y)

converges strongly in Lp
η(R2N ) as k → ∞. Indeed, since

∥Dsϕε(x, y)e
i(x−y)A(x+y

2
)(uk − u)∥pη,p =

�
RN

|uk(y)− u(y)|p|Dsϕε(y)|p dy,

we obtain from Lemma 4.1 with

w = |Dsϕε(y)|p ∈ L∞(RN ),

that, up to a subsequence that we do not re label,

(6.8)

�
RN

|uk(y)− u(y)|p|Dsϕε(y)|p dy → 0.

Combining the weak convergence (6.7) with the strong convergence (6.8), we obtain that

M([uk]
A
s,p)Re

[�
R2N

|Ds,Auk(x, y)|p−2Ds,Auk(x, y)Dsϕε(x, y)e
i(x−y)A(x+y

2
)uk(y) dη

)
→ M(d)Re

[�
R2N

w1(x, y)e
−i(x−y)A(x+y

2
)Dsϕε(x, y)u(y) dη

]
.

In this way, letting k → ∞ in (6.5) and taking (6.6) into account, we obtain

(6.9) M(d)

�
RN

ϕε(x) dµ+M(d)Re

[�
R2N

w1(x, y)e
−i(x−y)A(x+y

2
)Dsϕε(x, y)u(y) dη

]
≤

�
RN

ϕε(x) dν.
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Next, we will show that

(6.10)

�
R2N

w1e
−i(x−y)A(x+y

2
)Dsϕε(x, y)u(y) dη → 0 as ε → 0.

Note that

�
RN

||uk|p−2uk|p/p−1V (x) dx =

�
RN

|uk|pV (x) dx ≤ C

and

�
RN

||uk|p
∗
s−2uk|p

∗
s/p

∗
s−1 dx =

�
RN

|uk|p
∗
s dx ≤ C.

Hence, there are w2 ∈ Lp′

V (R
N ) and w3 ∈ L(p∗s)

′
(RN ) such that

(6.11) |uk|p−2uk ⇀ w2 in Lp′

V (R
N ),

and

(6.12) |uk|p
∗
s−2uk ⇀ w3 in L(p∗s)

′
(RN ).

Since ⟨I ′(uk), v⟩ → 0 for any v ∈ Ds,p
A,V (R

N ), we get

Re

[
M([uk]

A
s,p)

�
R2N

|Ds,Auk(x, y)|p−2Ds,Auk(x, y)Ds,Av(x, y) dη

+

�
RN

|uk|p−2ukvV (x) dx−
�
RN

|uk|p
∗
s−2ukv dx

]
→ 0,

and so by (6.7), (6.11) and (6.12),

Re

[
M(d)

�
R2N

w1(Ds,Av(x, y)) dη +

�
RN

w2vV (x) dx−
�
RN

w3v dx

]
= 0.(6.13)

Taking v = uϕε in (6.13), we deduce

Re

[
M(d)

�
R2N

w1Ds,A(uϕε) dη +

�
RN

w2uϕεV (x) dx−
�
RN

w3uϕε dx

]
= 0,
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and so

Re

[
M(d)

�
R2N

w1Dsϕε(x, y)e
−i(x−y)A(x+y

2
)u dη

]
= Re

[
M(d)

�
R2N

w1Ds,Au(x, y)ϕε dη −
�
RN

w2uϕεV (x) dx+

�
RN

w3uϕε dx

]
.

(6.14)

By dominated convergence theorem and the facts that w1Ds,Au(x, y) ∈ L1(R2N ), w2u ∈ L1
V (RN ) and w3u ∈

L1(RN ), we obtain that the right-hand side of (6.14) tends to 0 as ε → 0. This proves the claim (6.10).

Finally, taking ε → 0 in (6.9), we obtain

M(d)µj ≤ νj .

By (1.7) it follows that

νj ≥ M(d)µj ≥ M(d)SAν
p/p∗s
j

and so

νj ≥ (M(d)SA)
1

(1−p/p∗s) .

Since
∑

j νj < ∞, we conclude that J is finite.

We next prove that uk → u in Lp∗s (K) for any K ⊂ RN \
⋃
xj .

Lemma 6.4. For any compact K ⊂ RN \
⋃
xj, there holds that uk → u in Lp∗s (K).

Proof. Let K ⊂ RN \
⋃
xj be compact. We let

γ := dist (K, {xj}j),

hence by Lemma 6.3, γ > 0. Let R > 0 such that K ⊂ BR(0) and for ε > 0 define

Aε := {x ∈ BR(0) : dist(x,K) < ε} , 0 < ε < γ.
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Finally, consider ϕε ∈ C0(RN ) such that ϕε ∈ [0, 1] and

ϕε =


1, if x ∈ Aε/2

0, if x ∈ RN \Aε.

Observe that since

K ⊂ Aε/2 ⊂ Aε ⊂ RN \
⋃

xj ∩BR(0),

we obtain �
K
|uk|p

∗
s dx ≤

�
Aε

ϕε|uk|p
∗
s dx =

�
RN

ϕε|uk|p
∗
s dx.

Hence, by (1.6),

(6.15) lim sup
k→∞

�
K
|uk|p

∗
s dx ≤

�
RN

ϕε dν =

�
RN

ϕε|u|p
∗
s dx ≤

�
Aε

|u|p∗s dx.

By dominated convergence theorem, if ε → 0 in (6.15), then

(6.16) lim sup
k→∞

�
K
|uk|p

∗
s dx ≤

�
K
|u|p∗s dx.

Next, by Fatou’s Lemma

(6.17)

�
K
|u|p∗s dx ≤ lim inf

k→∞

�
K
|uk|p

∗
s dx.

Hence, combining (6.16) and (6.17) we get

(6.18) lim
k→∞

�
K
|uk|p

∗
s dx =

�
K
|u|p∗s dx.

Recalling that uk → u a.e. by for instance [21, Theorem 3.5] and weakly in Lp∗s (RN ), we get from the Brezis-Lieb

Lemma that �
K

(
|uk|p

∗
s − |uk − u|p∗s − |u|p∗s

)
dx → 0,

hence by (6.18), uk → u in Lp∗s (K). This ends the proof of the lemma.
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Lemma 6.5. For any compact K ⊂ RN \
⋃
xj, we have

(6.19) Re

[�
K×K

(
|Ds,Auk|p−2Ds,Auk − |Ds,Au|p−2Ds,Au

)
(Ds,Auk −Ds,Au) dη

]
→ 0,

as k → ∞.

Proof. Let φ ∈ C∞
0 (RN ) be such that 0 ≤ φ ≤ 1, φ = 1 in K and

supp(φ) ∩ {xj}j∈J = ∅.

First, observe that

Re
[(
|Ds,Auk|p−2Ds,Auk − |Ds,Au|p−2Ds,Au

)
(Ds,Auk −Ds,Au)

]
= |Ds,Auk|p + |Ds,Au|p − |Ds,Auk|p−2Re(Ds,AukDs,Au)− |Ds,Au|p−2Re(Ds,AuDs,Auk)

≥ |Ds,Auk|p + |Ds,Au|p − |Ds,Auk|p−1|Ds,Au| − |Ds,Au|p−1|Ds,Auk|

= |Ds,Auk|p−1(|Ds,Auk| − |Ds,Au|) + |Ds,Au|p−1(|Ds,Au| − |Ds,Auk|)

= (|Ds,Auk|p−1 − |Ds,Au|p−1)(|Ds,Auk| − |Ds,Au|) ≥ 0.

Hence,

0 ≤ Re

[�
K×K

(
|Ds,Auk|p−2Ds,Auk − |Ds,Au|p−2Ds,Au

)
(Ds,Auk −Ds,Au) dη

]
≤ Re

[�
R2N

(
|Ds,Auk|p−2Ds,Auk − |Ds,Au|p−2Ds,Au

)
(Ds,Auk −Ds,Au)φdη

]
= Re

[�
R2N

|Ds,Auk|p−2Ds,Auk(Ds,Auk −Ds,Au)φdη

]
− Re

[�
R2N

|Ds,Au|p−2Ds,Au(Ds,Auk −Ds,Au)φdη

]
.

(6.20)

Since (uk − u)φ is bounded in Ds,p
A,V (see the beginning of the proof of Lemma 6.3), we have

〈
I ′(uk), (uk − u)φ

〉
→ 0
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and then

o(1) =
〈
I ′(uk), (uk − u)φ

〉
= Re

[
M([uk]

A
s,p)

�
R2N

|Ds,Auk|p−2Ds,AukDs,A(uk − u)φdη

+

�
RN

|uk|p−2uk(uk − u)φV (x) dx−
�
RN

|uk|p
∗
s−2uk(uk − u)φdx

]
.

(6.21)

Observe that for K ′ := supp φ,∣∣∣∣ �
RN

|uk|p−2uk(uk − u)φV (x) dx+

�
RN

|uk|p
∗
s−2uk(uk − u)φdx

∣∣∣∣
≤
∣∣∣∣�

K′
|uk|p−1|uk − u|V (x) dx+

�
K′

|uk|p
∗
s−1|uk − u| dx

∣∣∣∣
≤ ∥V ∥∞,K′∥uk∥p−1

p,K′∥uk − u∥p,K′ + ∥uk∥
p∗s−1
p∗s

∥uk − u∥p∗s ,K′ → 0,

where the convergences at the end are consequences of [21, Theorem 3.5] and Lemma 6.4. Consequently, by

(6.21), we get

Re

[
M([uk]

A
s,p)

�
R2N

|Ds,Auk|p−2Ds,AukDs,A(uk − u)φdη

]
→ 0, as k → ∞.

Next, we split the above term as

o(1) = Re

[
M([uk]

A
s,p)

�
R2N

|Ds,Auk|p−2Ds,AukDs,A(uk − u)φdη

]
= Re

[
M([uk]

A
s,p)

�
R2N

|Ds,Auk|p−2Ds,AukDs,A(uk − u)φdη

]
+Re

[
M([uk]

A
s,p)

�
R2N

|Ds,Auk|p−2Ds,AukDsφei(x−y)A(x+y
2

)(uk − u) dη

]
.

(6.22)

Next, observe that by Hölder’s inequality, the fact that [uk]
A
s,p is bounded and by Lemma 4.1,∣∣∣∣M([uk]

A
s,p)

�
R2N

|Ds,Auk|p−2Ds,AukDsφei(x−y)A(x+y
2

)(uk − u) dη

∣∣∣∣
≤ C.

(
[uk]

A
s,p

)p−1/p
(�

R2N

|Dsφ(x, y)|p|uk(x)− u(x)|p dη
)1/p

≤ C

�
RN

|Dsφ(x)|p|uk(x)− u(x)|p dx = o(1).

(6.23)
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Hence, combining (6.22) and (6.23), we obtain that

(6.24) Re

[
M([uk]

A
s,p)

�
R2N

|Ds,Auk|p−2Ds,AukDs,A(uk − u)φdη

]
= o(1).

Finally, by weak convergence,

(6.25) Re

[�
R2N

|Ds,Au|p−2Ds,Au(Ds,Auk −Ds,Au)φdη

]
= o(1).

Therefore, by (6.24) and (6.25), and recalling (6.20), we get the conclusion (6.19).

We next prove the almost everywhere convergence of the magnetic fractional gradients. We will use the

following known inequalities for vectors ξ, η ∈ RN :

(6.26) (|ξ|p−2ξ − |η|p−2η) · (ξ − η) ≥ C|ξ − η|p, p ≥ 2

and

(6.27) (|ξ|p−2ξ − |η|p−2η) · (ξ − η) ≥ (p− 1)
|ξ − η|2

(|ξ|+ |η|)2−p
|ξ − η|p, 1 < p < 2.

We also appeal to the following fact: for any a, b ∈ C,

(6.28) Re
[
(|a|p−2a− |b|p−2b)(a− b)

]
= (|a|p−2a− |b|p−2b) · (a− b),

where in the right-hand side we have the scalar product between the vectors a = (Re(a), Im(a)) and b =

(Re(b), Im(b)).

Lemma 6.6. We have that

Ds,Auk(x, y) → Ds,Au(x, y) a.e. (x, y) ∈ R2N .
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Proof. Let K ⊂ RN \ {xj}j∈J be compact. Recalling Lemma 6.5, the inequalities (6.26) and (6.28), we have

for p ≥ 2,

o(1) = Re

[�
K×K

(
|Ds,Auk|p−2Ds,Auk − |Ds,Au|p−2Ds,Au

)
(Ds,Auk −Ds,Au) dη

]
=

�
K×K

(
|Ds,Auk|p−2Ds,Auk − |Ds,Au|p−2Ds,Au

)
· (Ds,Auk −Ds,Au) dη

≥ C

�
K×K

|Ds,Auk −Ds,Au|p dη.

Therefore, Ds,Auk → Ds,Au in Lp
η(K ×K) for any compact K ⊂ RN \ {xj}j∈J . Hence, the lemma holds in this

case. For the singular case, we proceed as follows

�
K×K

|Ds,Auk −Ds,Au|p dη ≤
�
K×K

|Ds,Auk −Ds,Au|p

(|Ds,Auk|+ |Ds,Au|)(2−p)p/2
(|Ds,Auk|+ |Ds,Au|)(2−p)p/2 dη

≤
∥∥∥∥ |Ds,Auk −Ds,Au|p

(|Ds,Auk|+ |Ds,Au|)(2−p)p/2

∥∥∥∥
2/p,η,K×K

∥∥∥∥ (|Ds,Auk|+ |Ds,Au|)(2−p)p/2

∥∥∥∥
2/(2−p),η,K×K

= C

(�
K×K

(
|Ds,Auk|p−2Ds,Auk − |Ds,Au|p−2Ds,Au

)
· (Ds,Auk −Ds,Au) dη

)p/2

= o(1).

This ends the proof of the lemma.

Finally, we prove Theorem 1.2.

Proof of Theorem 1.2. Let φ ∈ Ds,p
A,V (R

N ,C). By Lemma 5.3, there holds

(6.29) M([uk]
A
s,p)

�
R2N

|Ds,Auk|p−2Ds,AukDs,Aφdη +

�
RN

|uk|p−2ukφV (x) dx−
�
RN

|uk|p
∗
s−2ukφdx = o(1).

Firstly, we have that

|Ds,Auk|p−2Ds,Auk is bounded in Lp′
η (R2N )
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and |Ds,Auk|p−2Ds,Auk → |Ds,Au|p−2Ds,Au a.e. in R2N by the previous lemma. Hence,

|Ds,Auk|p−2Ds,Auk ⇀ |Ds,Au|p−2Ds,Au in Lp′
η (R2N ).

In particular,

[uk]
A
s,p → [u]As,p.

Therefore, the first integral in (6.29) converges to

M([u]As,p)

�
R2N

|Ds,Au|p−2Ds,AuDs,Aφdη.

The other terms are treated similarly: |uk|p−2uk and |uk|p
∗
s−2uk are bounded in Lp

V (R
N ) and Lp∗s (RN ), respec-

tively, and converge a.e. to |u|p−2u and |u|p∗s−2u by [21, Theorem 3.5] and Lemma 6.4, respectively.
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[27] G. Kirchhoff, Mechanik. Teubner, Leipzig, Germany, 1883.

[28] P. L. Lions, The concentration compactness principle in the calculus of variations. The limit case, I. Rev. Mat. Iberoamericana

1 (1985), 145-201.

[29] X. Mingqi, P. Pucci. M. Squassina and B. Zhang, Nonlocal Schrödinger-Kirchhoff equations with external magnetic fields.

Discrete Contin. Dyn. Syst. Ser. A 37 (2017) 503-521.

[30] S. Mosconi, M. Squassina, Nonlocal problems at nearly critical growth. Nonlinear Analysis: Theory, Methods and Applica-

tions,Volume 136,2016, 84-101.



MAGNETIC P-FRACTIONAL KIRCHHOFF PROBLEM 39

[31] P. Ochoa, Existence and multiplicity of solutions to magnetic equations in Orlicz-Sobolev spaces. Fractional Calculus and

Applied Analysis 26 (2023), 800-836.

[32] Palais R. and Smale S., A generalized Morse theory. Bull. Amer. Math. Soc. 70 (1964), 165-171.

[33] G. Palatucci, A. Pisante. Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional

Sobolev spaces. Calc. Var. 50, 799–829 (2014).

[34] K. Park, Multiplicity results of solutions to non-local magnetic Schrodinger-Kirchhoff type equations in RN . Axioms 11 (2022),

1-14.

[35] P. Pucci, M. Xiang and B. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the

fractional p-Laplacian in Rn. Calc. Var. Partial Differ. Equ. 54 (2015), 2785-2806.

[36] I. Schindler and K. Tintarev, A nonlinear Schrödinger equation with external magnetic field, Rostock. Math. Kolloq. 56 (2002),

49-54.

[37] Y. Wen, W. Zhang and P. Zhao, Multiplicity and concentration results for fractional Kirchhoff equations with magnetic fields.

Complex Variables and Elliptic Equations (2022). doi: 10.1080/17476933.2022.2133111.


