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MULTIPLE SOLUTIONS FOR THE p(x)−LAPLACE OPERATOR

WITH CRITICAL GROWTH

ANALÍA SILVA

Abstract. The aim of this paper is to extend previous results regarding the
multiplicity of solutions for quasilinear elliptic problems with critical growth
to the variable exponent case.

We prove, in the spirit of [11], the existence of at least three nontrivial so-

lutions to the following quasilinear elliptic equation −∆p(x)u = |u|q(x)−2u +

λf(x, u) in a smooth bounded domain Ω of RN with homogeneous Dirichlet
boundary conditions on ∂Ω. We assume that {q(x) = p∗(x)} 6= ∅, where
p∗(x) = Np(x)/(N − p(x)) is the critical Sobolev exponent for variable expo-

nents and ∆p(x)u = div(|∇u|p(x)−2∇u) is the p(x)−laplacian. The proof is
based on variational arguments and the extension of concentration compact-
ness method for variable exponent spaces.

1. Introduction.

Let us consider the following nonlinear elliptic problem:

(P)

{

−∆p(x)u = |u|q(x)−2u+ λf(x, u) in Ω

u = 0 on ∂Ω,

where Ω is a bounded smooth domain in R
N , ∆p(x)u = div(|∇u|p(x)−2∇u) is the

p(x)−laplacian, 1 < p(x) < N . On the exponent q(x) we assume that is critical in
the sense that {q(x) = p∗(x)} 6= ∅, where p∗(x) = Np(x)/(N − p(x)) is the critical
exponent in the Sobolev embedding, λ is a positive parameter and the nonlinear
term f is a subcritical perturbation with some precise assumptions that we state
below.

The purpose of this paper, is to extend the results obtained in [11] where the
same problem but with constant p was treated. Namely, in [11], problem (P) was
analyzed in the case p(x) ≡ p constant and q(x) ≡ p∗.

To be more precise, the result in [11] prove of the existence of at least three
nontrivial solutions for (P), one positive, one negative and one that changes sign,
under adequate assumptions on the source term f and the parameter λ.

The method in the proof used in [11] consists on restricting the functional associ-
ated to (P) to three different Banach manifolds, one consisting on positive functions,
one consisting on negative functions and the third one consisting on sign-changing
functions, all of them under a normalization condition, Then, by means of a suitable
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2 A. SILVA

version of the Mountain Pass Theorem due to Schwartz [27] and the concentration-
compactness principle of P.L. Lions [24] the authors can prove the existence of a
critical point of each restricted functional and, finally, the authors were able to
prove that critical points of each restricted functional are critical points of the
unrestricted one.

This method was introduced by M. Struwe [28] where the subcritical case (in the
sense of the Sobolev embeddigs) for the p−Laplacian was treated. A related result
for the p−Laplacian under nonlinear boundary condition can be found in [15].

Also, a similar problem in the case of the p(x)−Laplacian, but with subcritical
nonlinearities was analyzed in [12].

In all the above mentioned works, the main feature on the nonlinear term f is
that no oddness condition is imposed

Very little is known about critical growth nonlinearities for variable exponent
problems, since one of the main techniques used in order to deal with such issues
is the concentration-compactness principle. This result was recently obtained for
the variable exponent case independently in [20] and [21]. In both of these papers
the proof are similar and both relates to that of the original proof of P.L. Lions.
However, the arguments in [20] are a little more subtle and allow the authors to deal
with the case where the exponent q(x) is critical only in some part of the domain,
while the results in [21] requires q(x) to be identically p∗(x). So we will rely on the
concentration-compactness principle proved in [20] in this work.

The use of the concentration compactness method to deal with the p−Laplacian
has been used by so many authors before that is almost impossible to give a complete
list of contributions. However we want to refer to the work of J. Garćıa Azorero
and I. Peral in [22] from where we borrow some ideas.

Throughout this work, by (weak) solutions of (P) we understand critical points

of the associated energy functional acting on the Sobolev space W
1,p(x)
0 (Ω):

(1) Φ(v) =

∫

Ω

1

p(x)
|∇v|p(x) dx−

∫

Ω

1

q(x)
|u|q(x) dx− λ

∫

Ω

F (x, v) dx,

where F (x, u) =
∫ u

0 f(x, z) dz.

To end this introduction, let us comment on different applications where the
p(x)−Laplacian has appeared.

Up to our knowledge there are two main fields where the p(x)−Laplacian have
been proved to be extremely usefull in applications:

• Image Processing
• Electrorheological Fluids

For instance, Y. Chen, S. Levin and R. Rao [5] proposed the following model in
image processing

E(u) =

∫

Ω

|∇u(x)|p(x)

p(x)
+ f(|u(x) − I(x)|) dx → min

where p(x) is a function varying between 1 and 2 and f is a convex function.

In their application, they chose p(x) close to 1 where there is likely to be edges
and close to 2 where it is likely not to be edges.
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The electrorheological fluids application is much more developed and we refer to
the monograph by M. Ružička, [26], and its references.

2. Assumptions and statement of the results.

Throughout this paper the following notation will be used: Given q : Ω → R

bounded, we denote

q+ := sup
Ω
q(x), q− := inf

Ω
q(x).

The precise assumptions on the source term f are as follows:

(F1) f : Ω×R → R, is a measurable function with respect to the first argument
and continuously differentiable with respect to the second argument for
almost every x ∈ Ω. Moreover, f(x, 0) = 0 for every x ∈ Ω.

(F2) There exist constants c1 > 1/(q− − 1), c2 ∈ (p+, q−), 0 < c3 < c4, such
that for any u ∈ Lq(Ω) and p− ≤ p+ < r− ≤ r+ < q− ≤ q+.

c3ρr(u) ≤ c2

∫

Ω

F (x, u) dx ≤

∫

Ω

f(x, u)u dx

≤ c1

∫

Ω

fu(x, u)u2 dx ≤ c4ρr(u)

Where ρr(u) :=
∫

Ω
|u|r(x) dx

Remark 1. Observe that this set of hypotheses on the nonlinear term f are weaker
than the ones considered by [27].

Remark 2. We exhibit now one example of nonlinearities that fulfill all of our
hypotheses. f(x, u) = |u|r(x)−2u+ |u+|s(x)−2u+, if s(x) < r(x) , q−− 1 > s− > p+.

Hypotheses (F1)–(F2) are clearly satisfied.

So the main result of the paper reads:

Theorem 1. Under assumptions (F1)–(F2), there exist λ∗ > 0 depending only on
n, p, q and the constant c3 in (F2), such that for every λ > λ∗, there exists three
different, nontrivial, (weak) solutions of problem (P). Moreover these solutions are,
one positive, one negative and the other one has non-constant sign.

3. Results on variable exponent Sobolev spaces

The variable exponent Lebesgue space Lp(x)(Ω) is defined by

Lp(x)(Ω) =

{

u ∈ L1
loc(Ω):

∫

Ω

|u(x)|p(x) dx <∞

}

.

This space is endowed with the norm

‖u‖Lp(x)(Ω) = inf

{

λ > 0 :

∫

Ω

∣

∣

∣

∣

u(x)

λ

∣

∣

∣

∣

p(x)

dx ≤ 1

}

The variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) = {u ∈ W 1,1
loc (Ω): u ∈ Lp(x)(Ω) and |∇u| ∈ Lp(x)(Ω)}.
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The corresponding norm for this space is

‖u‖W 1,p(x)(Ω) = ‖u‖Lp(x)(Ω) + ‖|∇u|‖Lp(x)(Ω)

Define W
1,p(x)
0 (Ω) as the closure of C∞

0 (Ω) with respect to the W 1,p(x)(Ω) norm.

The spaces Lp(x)(Ω), W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) are separable and reflexive Banach

spaces when 1 < infΩ p ≤ supΩ p <∞.

As usual, we denote p′(x) = p(x)/(p(x) − 1) the conjugate exponent of p(x).

Define

p∗(x) =

{

Np(x)
N−p(x) if p(x) < N

∞ if p(x) ≥ N

The following results are proved in [14]

Proposition 1 (Hölder-type inequality). Let f ∈ Lp(x)(Ω) and g ∈ Lp′(x)(Ω).
Then the following inequality holds

∫

Ω

|f(x)g(x)| dx ≤ Cp‖f‖Lp(x)(Ω)‖g‖Lp′(x)(Ω)

Proposition 2 (Sobolev embedding). Let p, q ∈ C(Ω) be such that 1 ≤ q(x) ≤
p∗(x) for all x ∈ Ω. Assume moreover that the functions p and q are log-Hölder
continuous. Then there is a continuous embedding

W 1,p(x)(Ω) →֒ Lq(x)(Ω).

Moreover, if infΩ(p∗ − q) > 0 then, the embedding is compact.

Proposition 3 (Poincaré inequality). There is a constant C > 0, such that

‖u‖Lp(x)(Ω) ≤ C‖|∇u|‖Lp(x)(Ω),

for all u ∈W
1,p(x)
0 (Ω).

Remark 3. By Proposition 3, we know that ‖|∇u|‖Lp(x)(Ω) and ‖u‖W 1,p(x)(Ω) are

equivalent norms on W
1,p(x)
0 (Ω).

4. Proof of Theorem 1.

The proof uses the same approach as in [28]. That is, we will construct three
disjoint sets Ki 6= ∅ not containing 0 such that Φ has a critical point in Ki. These
sets will be subsets of C1−manifolds Mi ⊂W 1,p(x)(Ω) that will be constructed by
imposing a sign restriction and a normalizing condition.

In fact, let

J(v) =

∫

Ω

|∇v|p(x) − |v|q(x)dx

M1 =

{

u ∈ W
1,p(x)
0 (Ω):

∫

Ω

u+ > 0 and J(u+) =

∫

Ω

λf(x, u)u+dx

}

,

M2 =

{

u ∈ W
1,p(x)
0 (Ω):

∫

Ω

u− > 0 and J(u−) = −

∫

Ω

λf(x, u)u−dx

}

,

M3 = M1 ∩M2.

where u+ = max{u, 0}, u− = max{−u, 0} are the positive and negative parts of u.
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Finally we define

K1 = {u ∈M1 | u ≥ 0},

K2 = {u ∈M2 | u ≤ 0},

K3 = M3.

First, we need a Lemma to show that these sets are nonempty and, moreover,
give some properties that will be useful in the proof of the result.

Lemma 1. For every w0 ∈ W
1,p(x)
0 (Ω), w0 > 0 (w0 < 0), there exists tλ > 0 such

that tλw0 ∈M1(∈M2). Moreover, limλ→∞ tλ = 0.

As a consequence, given w0, w1 ∈ W
1,p(x)
0 (Ω), w0 > 0, w1 < 0, with disjoint

supports, there exists t̄λ, tλ > 0 such that t̄λw0 + tλw1 ∈ M3. Moreover t̄λ, tλ → 0
as λ→ ∞.

Proof. We prove the lemma for M1, the other cases being similar.

For w ∈W
1,p(x)
0 (Ω), w ≥ 0, we consider the functional

ϕ1(w) =

∫

Ω

|∇w|p(x) − |w|q(x) − λf(x,w)w dx.

Given w0 > 0, in order to prove the lemma, we must show that ϕ1(tλw0) = 0 for
some tλ > 0. Using hypothesis (F2), if t < 1, we have that:

ϕ1(tw0) ≥ Atp
+

−Btq
−

− λc4Ct
r−

and

ϕ1(tw0) ≤ Atp
−

−Btq
+

− λc3Ct
r+

,

where the coefficients A, B and C are given by:

A =

∫

Ω

|∇w0|
p(x) dx, B =

∫

Ω

|w0|
q(x) dx, C =

∫

Ω

|w0|
r(x) dx.

Since p− ≤ p+ < r− ≤ r+ < q− ≤ q+ it follows that ϕ1(tw0) is positive for t small
enough, and negative for t big enough. Hence, by Bolzano’s theorem, there exists
some t = tλ such that ϕ1(tλu) = 0. (This tλ needs not to be unique, but this does
not matter for our purposes).

In order to give an upper bound for tλ, it is enough to find some t1, such that
ϕ1(t1w0) < 0. We observe that:

ϕ1(tw0) ≤ max{Atp
−

− λc3Ct
r+

;Atp
+

− λc3Ct
r−

}

so it is enough to choose t1 such that max{Atp
−

1 − λc3Ct
r+

1 ;Atp
+

1 − λc3Ct
r−

1 } = 0,
i.e.,

t1 =

(

A

c3λC

)1/(r+
−p−)

or t1 =

(

A

c3λC

)1/(r−
−p+)

.

Hence, again by Bolzano’s theorem, we can choose tλ ∈ [0, t1], which implies that
tλ → 0 as λ→ +∞. �

For the proof of the Theorem, we need also the following Lemmas.
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Lemma 2. There exists C1, C2 > 0 depending on p(x) and on c2 such that, for
every u ∈ Ki, i = 1, 2, 3, it holds
∫

Ω

|∇u|p(x) dx =

(

λ

∫

Ω

f(x, u)u dx+

∫

Ω

|u|q(x) dx

)

≤ C1Φ(u) ≤ C2

(∫

Ω

|∇u|p(x) dx

)

.

Proof. The equality is clear since u ∈ Ki.

Now, by (F2), F (x, u) ≥ 0 so

Φ(u) =

∫

Ω

1

p(x)
|∇u|p(x) −

1

q(x)
|u|q(x) − λF (x, u) dx

≤
1

p−

∫

Ω

|∇u|p(x) dx.

To prove final inequality we proceed as follows, using the norming condition of
Ki and hypothesis (F2):

Φ(u) =

∫

Ω

1

p(x)
|∇u|p(x) −

1

q(x)
|u|q(x) − λF (x, u)dx

≥

(

1

p+
−

1

q−

)∫

Ω

|u|q(x) dx+ λ

∫

Ω

(

1

p+
f(x, u)u− F (x, u)

)

dx

≥

(

1

p+
−

1

q−

)∫

Ω

|u|q(x) dx+

(

1

p+
−

1

c2

)

λ

∫

Ω

f(x, u)udx.

(Recall that q− > p+).This finishes the proof. �

Lemma 3. There exists c > 0 such that

‖∇u+‖L
p(x)

(Ω)
≥ c ∀u ∈ K1,

‖∇u−‖L
p(x)

(Ω)
≥ c ∀u ∈ K2,

‖∇u+‖L
p(x)

(Ω)
, ‖∇u−‖L

p(x)
(Ω)

≥ c ∀u ∈ K3.

Proof. Suppose that ‖∇u±‖L
p(x)

(Ω)
< 1 By the definition of Ki,by (F2) and the

Poincaré inequality we have that

‖∇u±‖
p+

Lp(x)(Ω)
≤ ρp(∇u±) =

∫

Ω

λf(x, u)u± + |u±|
q(x)dx

≤ Cρr(u±) + ρq(u±)

≤ C‖u±‖
r−

Lr(x)(Ω) + ‖u±‖
q−

Lq(x)(Ω)

≤ c1‖∇u±‖
r−

Lp(x)(Ω) + c2‖∇u±‖
q−

Lp(x)(Ω)
.

As p+ < r− < q−, this finishes the proof. �

The following lemma describes the properties of the manifolds Mi.

Lemma 4. Mi is a C1 sub-manifold of W
1,p(x)
0 (Ω) of co-dimension 1 (i = 1, 2),

2 (i = 3) respectively. The sets Ki are complete. Moreover, for every u ∈ Mi we
have the direct decomposition

TuW
1,p(x)
0 (Ω) = TuMi ⊕ span{u+, u−},
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where TuM is the tangent space at u of the Banach manifold M . Finally, the
projection onto the first component in this decomposition is uniformly continuous
on bounded sets of Mi.

Proof. Let us denote

M̄1 =

{

u ∈ W
1,p(x)
0 (Ω):

∫

Ω

u+ dx > 0

}

,

M̄2 =

{

u ∈ W
1,p(x)
0 (Ω):

∫

Ω

u− dx > 0

}

,

M̄3 = M̄1 ∩ M̄2.

Observe that Mi ⊂ M̄i.

The set M̄i is open in W 1,p(x)(Ω), therefore it is enough to prove that Mi is
a C1 sub-manifold of M̄i. In order to do this, we will construct a C1 function
ϕi : M̄i → R

d with d = 1 (i = 1, 2), d = 2 (i = 3) respectively and Mi will be the
inverse image of a regular value of ϕi.

In fact, we define: For u ∈ M̄1,

ϕ1(u) =

∫

Ω

|∇u+|
p(x) − |u+|

q(x) − λf(x, u)u+ dx.

For u ∈ M̄2,

ϕ2(u) =

∫

Ω

|∇u−|
p(x) − |u−|

q(x) − λf(x, u)u− dx.

For u ∈ M̄3,

ϕ3(u) = (ϕ1(u), ϕ2(u)).

Obviously, we have Mi = ϕ−1
i (0). From standard arguments (see [10], or the

appendix of [25]), ϕi is of class C1. Therefore, we only need to show that 0 is a
regular value for ϕi. To this end we compute, for u ∈M1,

〈∇ϕ1(u), u+〉 ≤ p+ρp(∇u+) − q−ρq(u+) − λ

∫

Ω

f(x, u)u+ − fu(x, u)u2
+ dx

≤ q− (ρp(∇u+) − ρq(u+)) − λ

∫

Ω

f(x, u)u+ − fu(x, u)u2
+ dx

≤ (q−λ− λ)

∫

Ω

f(x, u)u+ dx−

∫

Ω

fu(x, u)u2
+ dx.

By (F2) the last term is bounded by

(q−λ− λ−
λ

c1
)

∫

Ω

f(x, u)u+ dx =

(

q− − 1 −
1

c1

)

(ρp(∇u+) − ρq(u+))

≤

(

q− − 1 −
1

c1

)

ρp(∇u+).

Recall that c1 < 1/(q− − 1). Now, the last term is strictly negative by Lemma
3. Therefore, M1 is a C1 sub-manifold of W 1,p(x)(Ω). The exact same argument
applies to M2. Since trivially

〈∇ϕ1(u), u−〉 = 〈∇ϕ2(u), u+〉 = 0

for u ∈M3, the same conclusion holds for M3.
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To see that Ki is complete, let uk be a Cauchy sequence in Ki, then uk → u
in W 1,p(x)(Ω). Moreover, (uk)± → u± in W 1,p(x)(Ω). Now it is easy to see, by
Lemma 3 and by continuity that u ∈ Ki.

Finally, by the first part of the proof we have the decomposition

TuW
1,p(x)(Ω) = TuMi ⊕ span{u+}

Where M1 = {u : ϕ1(u) = 0} and TuM1 = {v : 〈∇ϕ1(u), v〉 = 0}. Now let

v ∈ TuW
1,p(x)
0 (Ω) be a unit tangential vector, then v = v1 + v2 where v2 = αu+

and v1 = v − v2. Let us take α as

α =
〈∇ϕ1(u), v〉

〈∇ϕ1(u), u+〉
.

With this choice, we have that v1 ∈ TuM1. Now

〈ϕ1(u), v1〉 = 0.

The very same argument to show that TuW
1,p(x)(Ω) = TuM2⊕〈u−〉 and TuW

1,p(x)(Ω) =
TuM3 ⊕ 〈u+, u−〉.

From these formulas and from the estimates given in the first part of the proof,
the uniform continuity of the projections onto TuMi follows. �

Now, we need to check the Palais-Smale condition for the functional Φ restricted
to the manifold Mi. We begin by proving the Palais-Smale condition for the func-
tional Φ unrestricted, below certain level of energy.

Lemma 5. Assume that r ≤ q. Let {uj}j∈N ⊂W
1,p(x)
0 (Ω) a Palais-Smale sequence

then {uj}j∈N is bounded in W
1,p(x)
0 (Ω).

Proof. By definition

Φ(uj) → c and Φ′(uj) → 0.

Now, we have

c+ 1 ≥ Φ(uj) = Φ(uj) −
1

c2
〈Φ′(uj), uj〉 +

1

c2
〈Φ′(uj), uj〉,

where

〈Φ′(uj), uj〉 =

∫

Ω

|∇uj |
p(x) − |uj |

q(x) − λf(x, uj)uj dx.

Then, if c2 < q− we conclude

c+ 1 ≥

(

1

p+
−

1

c2

)∫

Ω

|∇uj |
p(x) dx −

1

c2
|〈F ′(uj), uj〉|.

We can assume that ‖uj‖W
1,p(x)
0 (Ω)

≥ 1. As ‖F ′(uj)‖ is bounded we have that

c+ 1 ≥

(

1

p+
−

1

c2

)

‖uj‖
p−

W
1,p(x)
0 (Ω)

−
C

c2
‖uj‖W

1,p(x)
0 (Ω)

.

We deduce that uj is bounded.

This finishes the proof. �
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From the fact that {uj}j∈N is a Palais-Smale sequence it follows, by Lemma 5,

that {uj}j∈N is bounded in W
1,p(x)
0 (Ω). Hence, by The Concentration-Compactness

method for variable exponent (See[20]), we have

|uj|
q(x) ⇀ ν = |u|q(x) +

∑

i∈I

νiδxi νi > 0,(2)

|∇uj |
p(x) ⇀ µ ≥ |∇u|p(x) +

∑

i∈I

µiδxi µi > 0,(3)

Sν
1/p∗(xi)
i ≤ µ

1/p(xi)
i .(4)

Note that if I = ∅ then uj → u strongly in Lq(x)(Ω). We know that {xi}i∈I ⊂
A := {x : q(x) = p∗(x)}.We define q−

A
:= infA q(x).

Let us show that if c <
(

1
p+ − 1

q−
A

)

Sn and {uj}j∈N is a Palais-Smale sequence,

with energy level c, then I = ∅.

In fact, suppose that I 6= ∅. Then let φ ∈ C∞
0 (Rn) with support in the unit ball

of R
n. Consider the rescaled functions φi,ε(x) = φ(x−xi

ε ).

As Φ′(uj) → 0 in (W
1,p(x)
0 (Ω))′, we obtain that

lim
j→∞

〈Φ′(uj), φi,εuj〉 = 0.

On the other hand,

〈Φ′(uj), φi,εuj〉 =

∫

Ω

|∇uj|
p(x)−2∇uj∇(φi,εuj) − λf(x, uj)ujφi,ε − |uj|

q(x)φi,ε dx

Then, passing to the limit as j → ∞, we get

0 = lim
j→∞

(∫

Ω

|∇uj |
p(x)−2∇uj∇(φi,ε)uj dx

)

+

∫

Ω

φi,ε dµ−

∫

Ω

φi,ε dν −

∫

Ω

λf(x, u)uφi,ε dx.

By Hölder inequality, it is easy to check that

lim
j→∞

∫

Ω

|∇uj |
p(x)−2∇uj∇(φi,ε)uj dx = 0.

On the other hand,

lim
ε→0

∫

Ω

φi,ε dµ = µiφ(0), lim
ε→0

∫

Ω

φi,ε dν = νiφ(0).

and

lim
ε→0

∫

Ω

λf(x, u)uφi,ε dx = 0.

So, we conclude that (µi − νi)φ(0) = 0, i.e, µi = νi. Then,

Sν
1/p∗(xi)
i ≤ ν

1/p(xi)
i ,

so it is clear that νi = 0 or Sn ≤ νi.
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On the other hand, as c2 > p+,

c = lim
j→∞

Φ(uj) = lim
j→∞

Φ(uj) −
1

p+
〈Φ′(uj), uj〉

= lim
j→∞

∫

Ω

(

1

p(x)
−

1

p+

)

|∇uj|
p(x) dx+

∫

Ω

(

1

p+
−

1

q(x)

)

|uj|
q(x) dx

− λ

∫

Ω

F (x, uj) dx+
λ

p+

∫

Ω

f(x, uj)uj dx

≥ lim
j→∞

∫

Ω

(

1

p+
−

1

q(x)

)

|uj|
q(x) dx

≥ lim
j→∞

∫

Aδ

(

1

p+
−

1

q(x)

)

|uj |
q(x) dx

≥ lim
j→∞

∫

Aδ

(

1

p+
−

1

q−
Aδ

)

|uj|
q(x) dx

But

lim
j→∞

∫

Aδ

(

1

p+
−

1

q−
Aδ

)

|uj |
q(x) dx =

(

1

p+
−

1

q−
Aδ

)





∫

Aδ

|u|q(x) dx+
∑

j∈I

νj





≥

(

1

p+
−

1

q−
Aδ

)

νi

≥

(

1

p+
−

1

q−
Aδ

)

Sn.

As δ > 0 is arbitrary, and q is continuous, we get

c ≥

(

1

p+
−

1

q−
A

)

Sn.

Therefore, if

c <

(

1

p+
−

1

q−
A

)

Sn,

the index set I is empty.

Now we are ready to prove the Palais-Smale condition below level c.

Lemma 6. Let {uj}j∈N ⊂W
1,p(x)
0 (Ω) be a Palais-Smale sequence, with energy level

c. If c <
(

1
p+ − 1

q−
A

)

Sn, then there exist u ∈ W
1,p(x)
0 (Ω) and {ujk}k∈N ⊂ {uj}j∈N

a subsequence such that ujk → u strongly in W
1,p(x)
0 (Ω).

Proof. We have that {uj}j∈N is bounded. Then, for a subsequence that we still

denote {uj}j∈N, uj → u strongly in Lq(x)(Ω). We define Φ′(uj) := φj . By the

Palais-Smale condition, with energy level c, we have φj → 0 in (W
1,p(x)
0 (Ω))′.

By definition 〈Φ′(uj), z〉 = 〈φj , z〉 for all z ∈W
1,p(x)
0 (Ω), i.e,

∫

Ω

|∇uj |
p(x)−2∇uj∇z dx−

∫

Ω

|uj |
q(x)−2ujz dx−

∫

Ω

λf(x, uj)z dx = 〈φj , z〉.
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Then, uj is a weak solution of the following equation.

(5)

{

−∆p(x)uj = |uj|
q(x)−2uj + λf(x, uj) + φj =: fj in Ω,

uj = 0 on ∂Ω.

We define T : (W
1,p(x)
0 (Ω))′ → W

1,p(x)
0 (Ω), T (f) := u where u is the weak solution

of the following equation.

(6)

{

−∆p(x)u = f in Ω,

u = 0 on ∂Ω.

Then T is a continuous invertible operator.

It is sufficient to show that fj converges in (W
1,p(x)
0 (Ω))′. We only need to prove

that |uj |q(x)−2uj → |u|q(x)−2u strongly in (W
1,p(x)
0 (Ω))′.

In fact,

〈|uj |
q(x)−2uj − |u|q(x)−2u, ψ〉 =

∫

Ω

(|uj |
q(x)−2uj − |u|q(x)−2u)ψ dx

≤ ‖ψ‖Lq(x)(Ω)‖(|uj|
q(x)−2uj − |u|q(x)−2u)‖Lq′(x)(Ω).

Therefore,

‖(|uj|
q(x)−2uj − |u|q(x)−2u)‖

(W
1,p(x)
0 (Ω))′

= sup
ψ∈W

1,p(x)
0

(Ω)

‖ψ‖
W

1,p(x)
0 (Ω)

=1

∫

Ω

(|uj |
q(x)−2uj − |u|q(x)−2u)ψ dx

≤ ‖(|uj |
q(x)−2uj − |u|q(x)−2u)‖Lq′(x)(Ω)

and now, by the Dominated Convergence Theorem this last term goes to zero as
j → ∞.

The proof is finished. �

Now, we can prove the Palais-Smale condition for the restricted functional.

Lemma 7. The functional Φ|Ki
satisfies the Palais-Smale condition for energy

level c for every c <
(

1
p+ − 1

q−
A

)

Sn.

Proof. Let {uk} ⊂ Ki be a Palais-Smale sequence, that is Φ(uk) is uniformly
bounded and ∇Φ|Ki

(uk) → 0 strongly. We need to show that there exists a subse-
quence ukj that converges strongly in Ki.

Let vj ∈ TujW
1,p(x)
0 (Ω) be a unit tangential vector such that

〈∇Φ(uj), vj〉 = ‖∇Φ(uj)‖(W
1,p(x)
0 (Ω))′

.

Now, by Lemma 4, vj = wj + zj with wj ∈ TujMi and zj ∈ span{(uj)+, (uj)−}.

Since Φ(uj) is uniformly bounded, by Lemma 2, uj is uniformly bounded in

W
1,p(x)
0 (Ω) and hence wj is uniformly bounded in W

1,p(x)
0 (Ω). Therefore

‖∇Φ(uj)‖(W
1,p(x)
0 (Ω))′

= 〈∇Φ(uj), vj〉 = 〈∇Φ|Ki
(uj), vj〉 → 0.

As wj is uniformly bounded and ∇Φ|Ki
(uk) → 0 strongly, the inequality con-

verges strongly to 0. Now the result follows by Lema 6. �
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We now immediately obtain

Lemma 8. Let u ∈ Ki be a critical point of the restricted functional Φ|Ki
. Then

u is also a critical point of the unrestricted functional Φ and hence a weak solution
to (P).

With all this preparatives, the proof of the Theorem follows easily.

Proof of Theorem 1. To prove the Theorem, we need to check that the func-
tional Φ |Ki

verifies the hypotheses of the Ekeland’s Variational Principle [7].

The fact that Φ is bounded below over Ki is a direct consequence of the con-
struction of the manifold Ki.

Then, by Ekeland’s Variational Principle, there existe vk ∈ Ki such that

Φ(vk) → ci := inf
Ki

Φ and (Φ |Ki
)′(vk) → 0.

We have to check that if we choose λ large, we have that ci <
(

1
p+ − 1

q−
A

)

Sn,. This

follows easily from Lemma 1. For instance, for c1, we have that choosing w0 ≥ 0,
if tλ < 1

c1 ≤ Φ(tλw0) ≤
1

p−
tp

+

λ

∫

Ω

|∇w0|
p(x) dx

Hence c1 → 0 as λ→ ∞. Moreover, it follows from the estimate of tλ in Lemma 1,

that ci <
(

1
p+ − 1

q−
A

)

Sn for λ > λ∗(p, q, n, c3). The other cases are similar.

From Lemma 7, it follows that vk has a convergent subsequence, that we still
call vk. Therefore Φ has a critical point in Ki, i = 1, 2, 3 and, by construction, one
of them is positive, other is negative and the last one changes sign. �
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[26] Michael Ružička, Electrorheological fluids: modeling and mathematical theory, Lecture
Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000.

[27] J.T. Schwartz. Generalizing the Lusternik-Schnirelman theory of critical points. Comm.
Pure Appl. Math., 17 (1964), 307–315.

[28] M. Struwe. Three nontrivial solutions of anticoercive boundary value problems for the

Pseudo-Laplace operator. J. Reine Angew. Math. 325 (1981), 68–74.
[29] P. Tolksdorf. Regularity for a more general class of quasilinear elliptic equations. J. Differ-

ential Equations, 51 (1984), 126–150.
[30] Z. Zhang, J. Chen and S. Li. Construction of pseudo-gradient vector field and sign-changing

multiple solutions involving p-Laplacian. J. Differential Equations, 201 (2004), 287–303.

Anaĺıa Silva
Departamento de Matemática, FCEyN
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