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MULTIPLE SOLUTIONS FOR THE p(z)-LAPLACE OPERATOR
WITH CRITICAL GROWTH

ANALIA SILVA

ABSTRACT. The aim of this paper is to extend previous results regarding the
multiplicity of solutions for quasilinear elliptic problems with critical growth
to the variable exponent case.

We prove, in the spirit of [I1], the existence of at least three nontrivial so-
lutions to the following quasilinear elliptic equation —Ap)u = \u|q(z)’2u +
Mf(z,u) in a smooth bounded domain Q of RN with homogeneous Dirichlet
boundary conditions on 9. We assume that {q(z) = p*(z)} # 0, where
p*(xz) = Np(z)/(N — p(z)) is the critical Sobolev exponent for variable expo-
nents and Ay, u = div(|Vu[P(®)=2V4) is the p(x)—laplacian. The proof is
based on variational arguments and the extension of concentration compact-
ness method for variable exponent spaces.

1. INTRODUCTION.

Let us consider the following nonlinear elliptic problem:

P) —Apyu = |ulf® 20+ Af(z,u) inQ

u=0 on 0f),
where 2 is a bounded smooth domain in RY, A yu = div(|Vu|P®)=2Vu) is the
p(x)—laplacian, 1 < p(x) < N. On the exponent ¢(z) we assume that is critical in
the sense that {¢(x) = p*(z)} # 0, where p*(z) = Np(z)/(N — p(x)) is the critical
exponent in the Sobolev embedding, A is a positive parameter and the nonlinear
term f is a subcritical perturbation with some precise assumptions that we state
below.

The purpose of this paper, is to extend the results obtained in [II] where the
same problem but with constant p was treated. Namely, in [I1], problem (D)) was
analyzed in the case p(x) = p constant and ¢(z) = p*.

To be more precise, the result in [II] prove of the existence of at least three
nontrivial solutions for (P)), one positive, one negative and one that changes sign,
under adequate assumptions on the source term f and the parameter A.

The method in the proof used in [I1] consists on restricting the functional associ-
ated to (P)) to three different Banach manifolds, one consisting on positive functions,
one consisting on negative functions and the third one consisting on sign-changing
functions, all of them under a normalization condition, Then, by means of a suitable
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version of the Mountain Pass Theorem due to Schwartz [27] and the concentration-
compactness principle of P.L. Lions [24] the authors can prove the existence of a
critical point of each restricted functional and, finally, the authors were able to
prove that critical points of each restricted functional are critical points of the
unrestricted one.

This method was introduced by M. Struwe [28] where the subcritical case (in the
sense of the Sobolev embeddigs) for the p—Laplacian was treated. A related result
for the p—Laplacian under nonlinear boundary condition can be found in [I5].

Also, a similar problem in the case of the p(z)—Laplacian, but with subcritical
nonlinearities was analyzed in [12].

In all the above mentioned works, the main feature on the nonlinear term f is
that no oddness condition is imposed

Very little is known about critical growth nonlinearities for variable exponent
problems, since one of the main techniques used in order to deal with such issues
is the concentration-compactness principle. This result was recently obtained for
the variable exponent case independently in [20] and [2I]. In both of these papers
the proof are similar and both relates to that of the original proof of P.L. Lions.
However, the arguments in [20] are a little more subtle and allow the authors to deal
with the case where the exponent ¢(z) is critical only in some part of the domain,
while the results in [21] requires g(z) to be identically p*(z). So we will rely on the
concentration-compactness principle proved in [20] in this work.

The use of the concentration compactness method to deal with the p—Laplacian
has been used by so many authors before that is almost impossible to give a complete
list of contributions. However we want to refer to the work of J. Garcia Azorero
and I. Peral in [22] from where we borrow some ideas.

Throughout this work, by (weak) solutions of (P]) we understand critical points
of the associated energy functional acting on the Sobolev space WO1 -p(@) (Q):

o= [ L@ ge - [ L jye@ gy — ) da
R0 /QW)'V' d /Qq(x)u do =X [ Plo.v)da,
where F(z,u) = [ f(x,2)dz.

To end this introduction, let us comment on different applications where the
p(z)—Laplacian has appeared.

Up to our knowledge there are two main fields where the p(xz)—Laplacian have
been proved to be extremely usefull in applications:

e Image Processing
e Electrorheological Fluids

For instance, Y. Chen, S. Levin and R. Rao [5] proposed the following model in
image processing

= W u(z) — I(x T — min
E(u) = @) + f(lu(z) = I(2)]) d

where p(z) is a function varying between 1 and 2 and f is a convex function.

In their application, they chose p(x) close to 1 where there is likely to be edges
and close to 2 where it is likely not to be edges.
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The electrorheological fluids application is much more developed and we refer to
the monograph by M. Ruzicka, [26], and its references.

2. ASSUMPTIONS AND STATEMENT OF THE RESULTS.

Throughout this paper the following notation will be used: Given ¢: @ — R
bounded, we denote

qt = supq(z), q~ :=infq(x).
Q Q
The precise assumptions on the source term f are as follows:

(F1) f: QxR — R, is a measurable function with respect to the first argument
and continuously differentiable with respect to the second argument for
almost every x € Q. Moreover, f(x,0) = 0 for every x € Q.

(F2) There exist constants ¢; > 1/(¢~ — 1), c2 € (pT,¢7), 0 < ¢3 < ¢4, such
that for any w € L) and p~ < pt <r~ <rt < ¢~ <q*.

espr(u) < 02/ F(z,u)dz < | f(z,u)udz
Q Q

<ec fu(x,u)u2 dx < capr(u)
Q

Where p,(u) := [, |u|"®) da

Remark 1. Observe that this set of hypotheses on the nonlinear term f are weaker
than the ones considered by [27].

Remark 2. We exhibit now one example of nonlinearities that fulfill all of our
hypotheses. f(z,u) = |u|"® =20+ |uy [*@ 20, if s(x) < r(z), ¢ —1>s >pt.
Hypotheses (F1)—(F2) are clearly satisfied.

So the main result of the paper reads:

Theorem 1. Under assumptions (F1)—(F2), there exist \* > 0 depending only on
n,p,q and the constant cs in (F2), such that for every A > \*, there exists three
different, nontrivial, (weak) solutions of problem (P)). Moreover these solutions are,
one positive, one negative and the other one has non-constant sign.

3. RESULTS ON VARIABLE EXPONENT SOBOLEV SPACES

The variable exponent Lebesgue space Lp(””)(Q) is defined by

LP®(Q) = {u eIl (Q): /Q () P@ da < oo} .

This space is endowed with the norm
p(z)
dr <1

[ull Lr () = inf {)\ >0: /
Q

The variable exponent Sobolev space W'P(*)(Q) is defined by
WhP@(Q) = {u e W21 (Q): u € LP)(Q) and [Vu| € LP®(Q)}.

u(z)

A
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The corresponding norm for this space is
||U||W1w<m>(sz) = ||U||Lp<m>(sz) + |||VU|HLW)(Q)

Define Wy (€) as the closure of C§°(€) with respect to the W1#@)(€) norm.

The spaces LP(*)(Q), WP (Q) and Wol’p(z) (Q) are separable and reflexive Banach
spaces when 1 < info p < supgp < oo.

As usual, we denote p’(x) = p(z)/(p(x) — 1) the conjugate exponent of p(z).
Define

Np(z) :
() = 4 Tr@ if p() < N
00 if p(@) > N

The following results are proved in [14]

Proposition 1 (Holder-type inequality). Let f € LP™)(Q) and g € LY ®)(Q).
Then the following inequality holds

/Q F@)g(@)] de < Cyllll pocer ey 9] oo

Proposition 2 (Sobolev embedding). Let p,q € C(Q) be such that 1 < q(z) <
p*(x) for all x € Q. Assume moreover that the functions p and q are log-Hélder
continuous. Then there is a continuous embedding

WP (Q) — LI@)(Q).
Moreover, if infq(p* — q) > 0 then, the embedding is compact.
Proposition 3 (Poincaré inequality). There is a constant C' > 0, such that
[ullLrer @) < CllIVUlll oo @)
for all uw € WoP™ ().
Remark 3. By Proposition 8] we know that ||[Vul|lre) (o) and [|lul[y1.ee)(q) are

equivalent norms on W, 7™ (Q).

4. PROOF OF THEOREM 1.

The proof uses the same approach as in [2§]. That is, we will construct three
disjoint sets K; # () not containing 0 such that ® has a critical point in K;. These
sets will be subsets of C'—manifolds M; C WP(®)(Q) that will be constructed by
imposing a sign restriction and a normalizing condition.

In fact, let

Iw) = [ 190l = fofrda
Q

Ml_{uewol”’(””)(s)); /Qu+>0and J(u+):/g

A (z, u)u+d:c} ,

Mgz{ueWol’p(z)(Q): /u_>0and J(u_)z—/
Q

)\f(x,u)u_d:v},
Q
Mz = M, N M.

where uy = max{u,0}, u— = max{—u,0} are the positive and negative parts of u.
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Finally we define
Klz{ueMl |’UJZO},
KQZ{UGMQ |’UJ§0},
K3 = Ms;.

First, we need a Lemma to show that these sets are nonempty and, moreover,
give some properties that will be useful in the proof of the result.

Lemma 1. For every wy € Wol’p(z)(Q), wo >0 (wg < 0), there exists tx > 0 such
that tyxwy € My (€ Ms). Moreover, limy_, o tx = 0.

As a consequence, given wg,w; € Wol’p(z)(Q), wo > 0, w1 < 0, with disjoint
supports, there exists ty,t, > 0 such that txwo + Lywi € Ms. Moreover ty,t, — 0
as X — oo.

Proof. We prove the lemma for Mj, the other cases being similar.

For w € Wol’p(x)(ﬂ), w > 0, we consider the functional
o1(w) = / |Vw|P® — |w]?® — \f(z, w)w dz.
Q

Given wg > 0, in order to prove the lemma, we must show that i (ty\wp) = 0 for
some ty > 0. Using hypothesis (F2), if t < 1, we have that:

o1(twg) > AP — Bt — \ey Ot

and
®1 (t’wo) S Ath — th+ — )\C3Ctr+,
where the coefficients A, B and C are given by:

A:/|Vw0|p(””)dac, B:/|w0|‘J(””)dac7 C=/|w0|T(m)dac.
Q Q Q

Since p~ < pT <r~ <7t < g~ < ¢t it follows that ¢ (fwg) is positive for ¢ small
enough, and negative for ¢ big enough. Hence, by Bolzano’s theorem, there exists
some t =t such that ¢;(t\u) = 0. (This ¢y needs not to be unique, but this does
not matter for our purposes).

In order to give an upper bound for ty, it is enough to find some ¢, such that
1(t1wg) < 0. We observe that:

o1 (twp) < max{At? — AesCt™ 5 AP — AezCt" )}

_ + _
s0 it is enough to choose ¢; such that max{At? — AcsCtT s At? — AesCt] } =0,

ie.,
A4 NV A4 NV
t = t = .
! (mc) orn (mc)

Hence, again by Bolzano’s theorem, we can choose ty € [0, ¢1], which implies that
tx — 0as A — +oo. O

For the proof of the Theorem, we need also the following Lemmas.
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Lemma 2. There exists C1,Cy > 0 depending on p(z) and on co such that, for
every u € K;, i1 =1,2,3, it holds

|VulP@ dz = <)\/ f(x,u)udz+/ |u|7®) d:c) < C1P(u) < Cy < | V[P da:) .
Q Q Q Q
Proof. The equality is clear since u € Kj.
Now, by (F2), F(z,u) > 0 so

1 1
®(u) = /Q oy Vel = ol = AF (@, w) da

p(z q(z)
< i/ \VulP®) da.
P Ja

To prove final inequality we proceed as follows, using the norming condition of
K; and hypothesis (F2):

D (u) :/ L VulP®) — L|u|q(w) — A (z,u)dz

o () q(x)
> (=) [ e [ (Srwu- Few) d

- - u x — f(z,u)u — F(z,u x
AP qa ) Ja o \p"

1 1 1 1
> — - — uq(z)dx—i—(———))\ f(z,u)udx.

(er ‘J) Q| | pt e Q ( )
(Recall that ¢— > p™).This finishes the proof. O

Lemma 3. There exists ¢ > 0 such that
[V ||
[Vu_||

>c Yuée Ky,
>c Yu € Ko,
>c Yué€ Ks.

L:D(z) (Q)
L:D(z) (Q)

HV’U/+||L;’(1) Q) Hvu— HLP(I) )

Proof. Suppose that ||[Vuy|| < 1 By the definition of K;,by (F2) and the

LP(’JF) (Q)
Poincaré inequality we have that

Vs |7y ) < (Vi) = /Q M (@, s + [us] 7@ de
< Cpr(ut) + pglus)
< Cllugllgre ) + H“iH{q(z)(Q)
< 1| Vgl + ol Vel L

As p™ <7~ < ¢, this finishes the proof. O

The following lemma describes the properties of the manifolds M;.

Lemma 4. M; is a C* sub-manifold of Wol’p(w)(ﬂ) of co-dimension 1 (i = 1,2),
2 (i = 3) respectively. The sets K; are complete. Moreover, for every uw € M; we
have the direct decomposition

Tuwol’p(m) (Q) = T’u.M’L ) Span{u+, U,},
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where T,M is the tangent space at uw of the Banach manifold M. Finally, the
projection onto the first component in this decomposition is uniformly continuous
on bounded sets of M;.

Proof. Let us denote

Mlz{ueWOl’p(z)(Q): u+dx>0},

S S—

J\_@:{UEWOLP(I)(Q): u_d:v>0},

M3 = Ml n Mg.
Observe that M; C M.

The set M; is open in Wl’p(w)(Q), therefore it is enough to prove that M; is
a C' sub-manifold of M;. In order to do this, we will construct a C' function
;i M; - RTwithd =1 (i =1,2), d = 2 (i = 3) respectively and M; will be the
inverse image of a regular value of ;.

In fact, we define: For u € M,
pr(u) = [ [FuslP) g 1) A (o, s
Q
For u € My,
palu) = [ [Fu_P®) a1 A (o,
Q
For u € Ms,
p3(u) = (p1(u), p2(u)).
Obviously, we have M; = ¢; *(0). From standard arguments (see [10], or the

appendix of [25]), ¢; is of class C'. Therefore, we only need to show that 0 is a
regular value for ¢;. To this end we compute, for v € M,

(Fruhus) < 0% py(Vue) =0 pylu) = A [ Flauug = fuloud da
<0 (Vi) = pufus)) = A [ g = fuloud da

<(g A=A | fl@zw)updr— | fulz,u)uf do.
Q Q

By (F2) the last term is bounded by

aa-2=2) [ faude= (0 =1 2 ) (0Fu) = )
1 Q C1

< (q‘ —1- C—ll> pp(Vuy).

Recall that ¢; < 1/(¢~ — 1). Now, the last term is strictly negative by Lemma
Bl Therefore, M; is a C' sub-manifold of W' P(®)(Q). The exact same argument
applies to Ms. Since trivially

(Ver(u),u-) = (Va(u),uy) =0

for u € M3, the same conclusion holds for Ms3.
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To see that K; is complete, let u; be a Cauchy sequence in K;, then uy — u
in WhP()(Q). Moreover, (ug)+ — us in WHPE)(Q). Now it is easy to see, by
Lemma [3l and by continuity that v € K;.

Finally, by the first part of the proof we have the decomposition
T, WP (Q) = T, M; & span{u, }

Where M7 = {u : ¢1(u) = 0} and T,M7 = {v : (Vp1(u),v) = 0}. Now let
v E TUWOLP(I)(Q) be a unit tangential vector, then v = vy + vy where vo = qu
and v;1 = v — vo. Let us take a as

_ (Vei(w),v)
(Ver(u), ug)

With this choice, we have that v; € T,,M;. Now
{p1(u),v1) = 0.

The very same argument to show that T, W P(*)(Q) = T, My®(u_) and T, WP(*)(Q) =
T.Ms® (ug,u_).

From these formulas and from the estimates given in the first part of the proof,
the uniform continuity of the projections onto T, M; follows. O

Now, we need to check the Palais-Smale condition for the functional ® restricted
to the manifold M;. We begin by proving the Palais-Smale condition for the func-
tional ® unrestricted, below certain level of energy.

Lemma 5. Assume thatr < q. Let {u;}jen C Wol’p(w)(ﬂ) a Palais-Smale sequence
then {u;}jen is bounded in Wol’p(z)(Q).

Proof. By definition

Now, we have
ct+ 12> 0(u;) = D(uy) — —(®'(uy),u) + — (' (1), u5),
where
@ ag)og) = [ (90, = s 1) < \f (o do
Then, if ¢ < g~ we conclude

1 1

1
1> — - = Vu,; [P do — = |(F'(u;), u;)].
c+ _(p—|- CQ)/Q| uj| x CQ|< (uj)s ug)|

> 1. As ||F'(u;)|| is bounded we have that

We can assume that HujHWLp(z)(Q)
0

1> 1 1 e C ‘
c+1=2 Z; - g HUJHWOLP(z)(Q) - g”uJ”WOI’p(m)(Q)'

We deduce that u; is bounded.
This finishes the proof. (I
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From the fact that {u;};en is a Palais-Smale sequence it follows, by Lemma [3

that {u;} ey is bounded in W, " (@) (Q). Hence, by The Concentration-Compactness
method for variable exponent (See[20]), we have

) 0,7 b = [0+ Y s >0
el
(3) [V [P — > (Va3 b, >0,
el
(4) Syil/P*(Ii) < ug/p(xi)'

Note that if I = ) then u; — u strongly in L9(®) (). We know that {x;};c;r C
A:={x:q(x) = p*(r)}.We define ¢, := inf 4 q(x).

Let us show that if ¢ < (p% - q%) S™ and {u;}jen is a Palais-Smale sequence,
A

with energy level ¢, then I = ().

In fact, suppose that I # (). Then let ¢ € C§°(R™) with support in the unit ball
of R"™. Consider the rescaled functions ¢; . (z) = ¢(==).

As ®'(u;) — 0 in (W™ (Q)), we obtain that
Jim (' (u;), dieuz) = 0.
On the other hand,
(@' (uy), dieuz) = /Q |V [P 2T,V (ieug) — M ug)ujdie — [uy] 10 i e de
Then, passing to the limit as j — oo, we get

0 = lim ( |Vuj|p(x)72VujV(¢>i75)uj dCC)
Q

j—o0
+ / (bi,a dy — / (bi,é: dv — / Af($7u)u¢i,a dx.
Q Q Q
By Holder inequality, it is easy to check that
lim |Vuj|p(w)_2VujV(¢i75)uj dx = 0.
J—00

On the other hand,
lim [ ¢i.dp = pi9(0), lim [ ¢;.dv = v;¢(0).
e—0 Q e—0 Q

and

lim [ Af(z,w)ug;dx =0.
e—0 Jo

So, we conclude that (u; — v;)¢(0) =0, i.e, u; = v;. Then,

Sl/»l/p* (z4) < Vll/P(Ii)

so it is clear that v; = 0 or S™ < v;.
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On the other hand, as ¢y > pt,
1
c= lim ®(uj) = lim (u;) — —(®(uy), u)
p

Jj—oo Jj—oo

1 1 1 1
= lim — = — pr(w)dac—i—/ (———) ui|1®) da
jroo Q(p(x) p+>| 4 o \pt " @) 1

1 1
> lim <— - —> u;]7®) da
i—oo Jo \pt+  q(z)
1

1
> lim (— - —) | |9 da:
i=oe Ja; \pt+ a(@)
1 1
> lim — — — | ;") dx
g=oo Jas \ Pt au,

Therefore, if

the index set I is empty.

Now we are ready to prove the Palais-Smale condition below level c.

Lemma 6. Let {u;}jen C Wol’p(w)(Q) be a Palais-Smale sequence, with energy level
c. Ife< (p%r - é) S™, then there exist u € Wol’p(m)(ﬂ) and {uj, }ken C {u;}jen
a subsequence such that w;, — u strongly in Wol’p(x)(Q).

Proof. We have that {u;};en is bounded. Then, for a subsequence that we still
denote {u;}jen, u; — u strongly in L) (Q). We define ®'(u;) := ¢;. By the
Palais-Smale condition, with energy level ¢, we have ¢; — 0 in (W ?")(Q))".

By definition (®/(u;), z) = (¢;, z) for all z € W™ (Q), ie,

/Q|Vuj|p(w)_2Vuszd:C—/Q|uj|q(w)_2ujzdac—/Q/\f(:v,uj)zdgc:<¢j,z>.
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Then, u; is a weak solution of the following equation.

{_Ap(m)uj = || 720, + Nf(z,uy) + ¢ = f; in Q,

5
(5) u; =0 on ON.

We define T: (W 7(Q)) — W™ (Q), T(f) := u where u is the weak solution
of the following equation.

(6) —Ap(m)u = f in Q,
u=20 on 0f).

Then T is a continuous invertible operator.

It is sufficient to show that f; converges in (W, ”")(Q))’. We only need to prove
that |u;|?9®~2u; — |u|9®) =2y strongly in (Wol’p(m)(ﬂ))'.

In fact,
<|uj|q(m)72uj _ |u|q(z)72u’¢> _ /Q(|uj|q(z)72uj _ |u|q(m)72u)w da

< 19l oo o | (1517 2y = [u 19720 | Loy (-
Therefore,
(g1 72 = T2 | prse ) = sup /Q(luj|Q(m)_2Uj = [u|"®) 2wy da

vewy P (q)

=1
HQPHW&’p(z) @

IN

1131720 = ) 772 0) | o
and now, by the Dominated Convergence Theorem this last term goes to zero as
j — oo.

The proof is finished. O

Now, we can prove the Palais-Smale condition for the restricted functional.

Lemma 7. The functional ®|k, satisfies the Palais-Smale condition for energy
1 1 n

level ¢ for every ¢ < (ﬂ q;) S™.

Proof. Let {ur} C K; be a Palais-Smale sequence, that is ®(uy) is uniformly

bounded and V®|g, (ux) — 0 strongly. We need to show that there exists a subse-

quence ug, that converges strongly in Kj.

Let vj € Ty, Wy ") (Q) be a unit tangential vector such that

(VO (uj),v5) = [VO(w)) 1 v -

Now, by Lemmall v; = w; + z; with w; € T,,; M; and z; € span{(u;)y, (u;)—}.
Since ®(u;) is uniformly bounded, by Lemma [, u; is uniformly bounded in

Wy P)(©) and hence w; is uniformly bounded in Wy (Q). Therefore
IV (i)l 1w )y = (VO(w5), 05) = (V@[K, (u5), v5) — 0.

As wj is uniformly bounded and V®|g, (ux) — 0 strongly, the inequality con-
verges strongly to 0. Now the result follows by Lema O
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We now immediately obtain

Lemma 8. Let u € K; be a critical point of the restricted functional ®|x,. Then
u 15 also a critical point of the unrestricted functional ® and hence a weak solution

to (B)).
With all this preparatives, the proof of the Theorem follows easily.

Proof of Theorem 1. To prove the Theorem, we need to check that the func-
tional @ |k, verifies the hypotheses of the Ekeland’s Variational Principle [7].

The fact that ® is bounded below over K is a direct consequence of the con-
struction of the manifold K;.

Then, by Ekeland’s Variational Principle, there existe vy € K; such that
D(vg) — ¢ = ilr(lfq) and (@ |k,) (ve) — O.

We have to check that if we choose A large, we have that ¢; < (ﬁ — q%) S™,. This
A

follows easily from Lemma[Il For instance, for ¢;, we have that choosing wy > 0,

ifty <1

1
c1 < P(trwp) < —_t’;\+ |Vw0|p(z) dx
p Q
Hence ¢; — 0 as A — oo. Moreover, it follows from the estimate of ¢ in Lemma[I]

that ¢; < (p%r - q%) S™ for A > A\*(p, q,n,cs3). The other cases are similar.
A

From Lemma [, it follows that vy has a convergent subsequence, that we still
call vg. Therefore ® has a critical point in Kj;, i = 1,2, 3 and, by construction, one
of them is positive, other is negative and the last one changes sign. O

Acknowledgements I want to thank Julian Ferndndez Bonder for valuable
help.
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